US009447415B2 ### (12) United States Patent Wilton et al. (10) Patent No.: US 9,447,415 B2 (45) **Date of Patent:** *Sep. 20, 2016 ## (54) ANTISENSE OLIGONUCLEOTIDES FOR INDUCING EXON SKIPPING AND METHODS OF USE THEREOF (71) Applicant: The University of Western Australia, Crawley (AU) (72) Inventors: Stephen Donald Wilton, Applecross (AU); Sue Fletcher, Bayswater (AU); Graham McClorey, Bayswater (AU) (73) Assignee: The University of Western Australia, Crawley (AU) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal dis- claimer. (21) Appl. No.: 14/857,561 (22) Filed: Sep. 17, 2015 (65) Prior Publication Data US 2016/0002632 A1 Jan. 7, 2016 #### Related U.S. Application Data (63) Continuation of application No. 13/826,880, filed on Mar. 14, 2013, now Pat. No. 9,175,286, which is a continuation of application No. 13/741,150, filed on Jan. 14, 2013, now abandoned, which is a continuation of application No. 13/168,857, filed on Jun. 24, 2011, now abandoned, which is a continuation of application No. 12/837,359, filed on Jan. 15, 2008, now Pat. No. 8,232,384, which is a continuation of application No. 11/570,691, filed as application No. PCT/AU2005/000943 on Jun. 28, 2005, now Pat. No. 7,807,816. #### (30) Foreign Application Priority Data Jun. 28, 2004 (AU) 2004903474 (51) Int. Cl. *C07H 21/04* (2006.01) *C12N 15/113* (2010.01) (52) U.S. Cl. CPC *C12N 15/113* (2013.01); *C12N 2310/11* (2013.01); *C12N 2310/315* (2013.01); *C12N 2310/321* (2013.01); *C12N 2310/3233* (2013.01); *C12N 2310/3341* (2013.01); *C12N 2310/3519* (2013.01); *C12N 2320/30* (2013.01); *C12N 2320/33* (2013.01) (58) Field of Classification Search None See application file for complete search history. (56) References Cited U.S. PATENT DOCUMENTS 4,458,066 A 7/1984 Caruthers et al. 5,034,506 A 7/1991 Summerton et al. | 5,138,045 A | 8/199 | 2 Cook et al. | |-------------|-----------|---------------------| | 5,142,047 A | 8/199 | 2 Summerton et al. | | 5,149,797 A | 9/199 | 2 Pederson et al. | | 5,166,315 A | 11/199 | 2 Summerton et al. | | 5,185,444 A | 2/199 | 3 Summerton et al. | | 5,190,931 A | 3/199 | 3 Inouye | | 5,217,866 A | | | | 5,506,337 A | 4/199 | 6 Summerton et al. | | 5,521,063 A | 5/199 | 6 Summerton et al. | | 5,627,274 A | A 5/199 | 7 Kole et al. | | 5,665,593 A | A 9/199 | 7 Kole et al. | | 5.698.685 A | 12/199 | 7 Summerton et al. | | 5,801,154 A | A 9/199 | 8 Baracchini et al. | | 5,869,252 A | 2/199 | 9 Bouma et al. | | 5,892,023 A | 4/199 | 9 Pirotzky et al. | | 5,916,808 A | 6/199 | | | 5,976,879 A | 11/199 | 9 Kole et al. | | 6,153,436 A | 11/200 | 0 Hermonat et al. | | | 31 4/200 | 1 Bennett et al. | | | 31 11/200 | 1 Dean et al. | | | 31 5/200 | 2 Monia | | | 31 9/200 | | | | 32 11/200 | 3 Matsuo | | 6,653,467 E | 31 11/200 | 3 Matsuo et al. | | | 31 12/200 | 3 Bennett et al. | | | 32 4/200 | 4 Matsuo et al. | | | 32 8/200 | 4 Iversen et al. | | | 31 10/200 | 4 Debs et al. | | | 32 2/200 | 6 Xiao | | | 32 7/200 | 6 Mixson | | | 32 1/200 | 7 Mixson | | | 32 7/200 | 7 Zhou | | ,, | ·- · | 1) | #### (Continued) #### FOREIGN PATENT DOCUMENTS AU 2003284638 A1 6/2004 AU 780517 B2 3/2005 (Continued) ### OTHER PUBLICATIONS Aartsma-Rus, Annemieke et al., "Guidelines for Antisense Oligonucleotide Design and Insight Into Splice-modulating Mechanisms," Molecular Therapy, vol. 17(3):548-553 (2009). Supplementary Table 1. International Preliminary Report on Patentability, PCT/US2014/029689, dated Sep. 15, 2015, pp. 1-10. International Preliminary Report on Patentability, PCT/US2014/029766, dated Sep. 15, 2015, pp. 1-10. Popplewell, et al., Design of Phosphorodiamidate Morpholino Oligomers (PMOs) for the Induction of Exon Skipping of the Human DMD Gene, DSGT Poster, 2008, 1 page. University of Western Australia v. Academisch Ziekenhuis Leiden, Decision—Priority 37 CFR § 41.125 (a), 18 pages, Patent Interference No. 106,013, (Doc 196), dated Sep. 29, 2015. (Continued) Primary Examiner — Kimberly Chong (74) Attorney, Agent, or Firm — Nelson Mullins Riley & Scarborough LLP; Amy E. Mandragouras, Esq.; Ariana D. Harris #### (57) ABSTRACT An antisense molecule capable of binding to a selected target site to induce exon skipping in the dystrophin gene, as set forth in SEQ ID NO: 1 to 202. #### 2 Claims, 22 Drawing Sheets # US 9,447,415 B2 Page 2 | (56) | Referer | ices Cited | 2009/0082547 | | | Iversen et al. | |------------------------------------|------------|---|------------------------------|----|--------------------|---------------------------------------| | U.S | S. PATENT | DOCUMENTS | 2009/0088562
2009/0099066 | | 4/2009
4/2009 | Weller et al.
Moulton et al. | | 0.0 | , 1711LAVI | DOCUMENTS | 2009/0228998 | Al | | van Ommen et al. | | 7,314,750 B2 | | | 2009/0269755 | | 10/2009 | Aartsma-Rus et al. | | 7,468,418 B2 | | Iversen et al. | 2009/0312532
2010/0016215 | | 1/2010 | Van Deutekom et al.
Moulton et al. | | 7,534,879 B2
7,655,785 B1 | | van Deutekom
Bentwich | 2010/0010213 | | | Sazani et al. | | 7,655,788 B2 | | Khvorova et al. | 2010/0168212 | | | Popplewell et al. | | 7,807,816 B2 | | Wilton et al. | 2011/0015253 | | 1/2011 | | | 7,902,160 B2 | | Matsuo et al.
Wilton et al. | 2011/0015258
2011/0046203 | | 1/2011
2/2011 | Wilton et al. Wilton et al. | | 7,960,541 B2
7,973,015 B2 | | van Ommen et al. | 2011/0046360 | | 2/2011 | Matsuo et al. | | 8,084,601 B2 | | Popplewell et al. | 2011/0110960 | | | Platenburg | | 8,232,384 B2 | | Wilton et al. | 2011/0263682
2011/0263686 | | 10/2011 | De Kimpe et al.
Wilton et al. | | 8,324,371 B2
8,361,979 B2 | | Popplewell et al.
Aartsma-Rus et al. | 2011/0281787 | | | Lu et al. | | 8,450,474 B2 | | Wilton et al. | 2011/0294753 | | | De Kimpe et al. | | 8,455,634 B2 | | Wilton et al. | 2011/0312086
2012/0022134 | | 1/2011 | Van Deutekom
De Kimpe et al. | | 8,455,635 B2
8,455,636 B2 | | Wilton et al. Wilton et al. | 2012/0022134 | | | Wilton et al. | | 8,461,325 B2 | | Popplewell et al. | 2012/0022145 | A1 | 1/2012 | Wilton et al. | | 8,476,423 B2 | 7/2013 | Wilton et al. | 2012/0029057 | | | Wilton et al. | | 8,486,907 B2 | | Wilton et al. | 2012/0029058
2012/0029059 | | | Wilton et al. Wilton et al. | | 8,501,703 B2
8,501,704 B2 | | Bennett et al.
Mourich et al. | 2012/0029060 | | | Wilton et al. | | 8,524,676 B2 | | Stein et al. | 2012/0041050 | | | Wilton et al. | | 8,524,880 B2 | | Wilton et al. | 2012/0046342 | | 2/2012 | | | 8,536,147 B2 | | Weller et al. | 2012/0059042
2012/0065169 | | | Platenburg et al.
Hanson et al. | | 8,552,172 B2
8,592,386 B2 | | Popplewell et al.
Mourich et al. | 2012/0065244 | | 3/2012 | Popplewell et al. | | 8,618,270 B2 | 12/2013 | Iversen et al. | 2012/0108652 | | | Popplewell et al. | | 8,624,019 B2 | | Matsuo et al. | 2012/0108653
2012/0115150 | | | Popplewell et al.
Bozzoni et al. | | 8,637,483 B2
8,697,858 B2 | | Wilton et al.
Iversen | 2012/0113130 | | | Platenburg | | 8,741,863 B2 | | Moulton et al. | 2012/0149756 | A1 | 6/2012 | Schumperli et al. | | 8,759,307 B2 | 6/2014 | Stein et al. | 2012/0172415 | | | Voit et al. | | 8,759,507 B2 | | Van Deutekom | 2012/0202752
2012/0289457 | | 8/2012
11/2012 | | | 8,779,128 B2
8,785,407 B2 | | Hanson et al.
Stein et al. | 2013/0072671 | | 3/2013 | Van Deutekom | | 8,785,410 B2 | | Iversen et al. | 2013/0090465 | | | Matsuo et al. | | 8,835,402 B2 | | Kole et al. | 2013/0116310
2013/0197220 | | 5/2013
8/2013 | Wilton et al. | | 8,865,883 B2
8,871,918 B2 | | Sazani et al.
Sazani et al. | 2013/013/220 | | | Watanabe et al. | | 8,877,725 B2 | | Iversen et al. | 2013/0217755 | | 8/2013 | Wilton et al. | | 8,895,722 B2 | | Iversen et al. | 2013/0253033
2013/0253180 | | | Wilton et al. Wilton et al. | | 8,906,872 B2
9,018,368 B2 | | Iversen et al.
Wilton et al. | 2013/0233180 | | 10/2013 | Wilton et al. | | 9,018,308 B2
9,024,007 B2 | | Wilton et al. | 2013/0289096 | A1 | 10/2013 | Popplewell et al. | | 9,035,040 B2 | 5/2015 | Wilton et al. | 2013/0302806 | | 11/2013 | Van Deutekom | | 9,175,286 B2 | | Wilton et al.
Bestwick et al. | 2013/0331438
2014/0057964 | | 12/2013
2/2014 | Wilton et al.
Popplewell et al. | | 9,217,148 B2
9,228,187 B2 | | Wilton et al. | 2014/0080896 | | 3/2014 | Nelson et al. | | 9,234,198 B1 | | Sazani et al. | 2014/0080898 | | | Wilton et al. | | 9,249,416 B2 | | Wilton et al. | 2014/0094500
2014/0113955 | | | Sazani et al.
De Kimpe et al. | | 2001/0056077 A1
2002/0049173 A1 | | Matsuo
Bennett et al. | 2014/0128592 | | 5/2014 | | | 2002/0055481 A1 | | Matsuo et al. | 2014/0155587 | | | Wilton et al. | | 2002/0110819 A1 | | Weller et al. | 2014/0213635
2014/0221458 | | | Van Deutekom
De Kimpe et al. | | 2002/0156235 A1
2003/0166588 A1 | | Manoharan et al.
Iversen et al. | 2014/0243515 | | 8/2014 | | | 2003/0100368 A1
2003/0224353 A1 | | Stein et al. | 2014/0243516 | | | Wilton et al. | | 2003/0235845 A1 | | van Ommen et al. | 2014/0275212 | | 9/2014 | van Deutekom
Leumann et al. | | 2004/0248833 A1
2004/0254137 A1 | | Emanuele et al. Ackermann et al. | 2014/0296323
2014/0315862 | | 10/2014 | | | 2004/0234137 A1
2005/0026164 A1 | | | 2014/0315977 | | | Bestwick et al. | | 2005/0048495 A1 | | Baker et al. | 2014/0316123 | | 10/2014 | | | 2005/0153935 A1 | | Iversen et al. | 2014/0323544
2014/0329762 | | 10/2014
11/2014 | | | 2006/0099616 A1
2006/0147952 A1 | | van Ommen et al.
van Ommen et al. | 2014/0329881 | | 11/2014 | Bestwick et al. | | 2006/0147332 A1
2006/0148740 A1 | | Platenburg | 2014/0343266 | A1 | 11/2014 | Watanabe et al. | | 2006/0287268 A1 | | Iversen et al. | 2014/0350067 | | 11/2014 | | | 2007/0037165 A1
2007/0082861 A1 | | Venter et al.
Matsuo et al. | 2014/0350076
2014/0357698 | | 11/2014
12/2014 | van
Deutekom
Van Deutekom et al. | | 2007/0082861 A1
2007/0265215 A1 | | Iversen et al. | 2014/0357855 | | 12/2014 | | | 2008/0194463 A1 | | Weller et al. | 2015/0045413 | | | De Visser et al. | | 2008/0200409 A1 | 8/2008 | Wilson et al. | 2015/0057330 | | | Wilton et al. | | 2008/0209581 A1 | | van Ommen et al. | 2015/0152415 | | 6/2015 | | | 2009/0076246 A1 | 3/2009 | van Deutekom | 2015/0353931 | Al | 12/2015 | Wilton et al. | | (56) | Referen | nces Cited | JP
JP | 2014-054250 A
2014-111638 A | 3/2014
6/2014 | |------------------------------------|----------------------|----------------------------------|--------------|----------------------------------|--| | U.S | . PATENT | DOCUMENTS | JP | 2014-138589 A | 7/2014 | | 2015/0361428 A1 | 12/2015 | Bestwick et al. | WO
WO | 93/20227 A1
94/02595 A1 | 10/1993
2/1994 | | 2015/0376615 A1 | 12/2015 | Wilton et al. | WO | 94/26887 A1 | 11/1994 | | 2015/0376616 A1
2015/0376617 A1 | | Wilton et al.
Sazani et al. | WO
WO | 96/10391 A1
96/10392 A1 | 4/1996
4/1996 | | 2015/0376618 A1 | | Sazani et al. | WO | 97/30067 A1 | 8/1997 | | 2016/0002631 A1 | | Wilton et al. | WO
WO | 97/34638 A1
00/15780 A1 | 9/1997
3/2000 | | 2016/0002633 A1
2016/0002634 A1 | | Sazani et al.
Sazani et al. | WO | 00/44897 A1 | 8/2000 | | 2016/0002635 A1 | 1/2016 | Wilton et al. | WO
WO | 00/78341 A1 | 12/2000
7/2001 | | 2016/0002637 A1
2016/0040162 A1 | | Sazani et al.
Bestwick et al. | WO | 01/49775 A2
01/72765 A1 | 10/2001 | | 2010/0040102 111 | 2,2010 | Desiwick et al. | WO | 01/83503 A2 | 11/2001 | | FOREI | GN PATE | NT DOCUMENTS | WO
WO | 01/83740 A2
02/18656 A2 | 11/2001
3/2002 | | CA 25 | 07125 41 | 6/2004 | WO | 02/24906 A1 | 3/2002 | | | 07125 A1
54058 A1 | 6/2004
11/2000 | WO
WO | 02/29406 A1
03/053341 A2 | 4/2002
7/2003 | | | 60318 A2 | 12/2001 | WO | 2004/048570 A1 | 6/2004 | | | 91097 A1
91098 A2 | 3/2002
3/2002 | WO | 2004/083446 A2 | 9/2004 | | EP 14 | 95769 A1 | 1/2005 | WO
WO | 2004083432 A1
2005/115479 A2 | 9/2004
12/2005 | | | 44297 A2
68769 A1 | 6/2005
8/2005 | WO | 2006/000057 A1 | 1/2006 | | | 19249 A1 | 1/2006 | WO
WO | 2006/021724 A2
2006/112705 A2 | 3/2006
10/2006 | | | 91098 B9 | 6/2006 | wo | 2007/058894 A2 | 5/2007 | | | 66010 A1
57548 A1 | 3/2007
11/2007 | WO | 2007/133812 A2 | 11/2007 | | EP 14 | 95769 B1 | 2/2008 | WO
WO | 2007/135105 A1
2008/036127 A2 | 11/2007
3/2008 | | | 60318 B1
19249 B1 | 5/2008
9/2008 | WO | 2009/054725 A2 | 4/2009 | | | 44297 B1 | 9/2008 | WO
WO | 2009/101399 A1
2009/139630 A2 | 8/2009
11/2009 | | | 19783 A1 | 11/2009 | WO | 2010/048586 A1 | 4/2010 | | | 35948 A2
06781 A2 | 12/2009
7/2010 | WO | 2010/050801 A1 | 5/2010 | | EP 22 | 58863 A1 | 12/2010 | WO
WO | 2010/050802 A2
2010/115993 A1 | 5/2010
10/2010 | | | 84264 A1
74885 A2 | 2/2011
10/2011 | WO | 2010/123369 A1 | 10/2010 | | | 86636 A2 | 11/2011 | WO
WO | 2010/136415 A1
2010/136417 A1 | 12/2010
12/2010 | | | 92660 A2 | 12/2011 | WO | 2010/150231 A1 | 12/2010 | | | 00430 A2
30153 A1 | 9/2012
12/2012 | WO
WO | 2011/024077 A2 | 3/2011 | | EP 25 | 30154 A1 | 12/2012 | WO | 2011/045747 A1
2011/057350 A1 | 4/2011
5/2011 | | | 30155 A1
30156 A1 | 12/2012
12/2012 | WO | 2011/143008 A1 | 11/2011 | | EP 25 | 81448 A1 | 4/2013 | WO
WO | 2012/001941 A1
2012/029986 A1 | 1/2012
3/2012 | | | 94640 A1
94641 A1 | 5/2013
5/2013 | WO | 2012/043730 A1 | 4/2012 | | | 94642 A1 | 5/2013 | WO
WO | 2012/109296 A1
2012/150960 A1 | 8/2012
11/2012 | | | 02322 A1 | 6/2013 | wo | 2013/033407 A2 | 3/2013 | | | 07484 A1
12917 A1 | 6/2013
7/2013 | WO | 2013/053928 A1
2013/100190 A1 | 4/2013 | | EP 26 | 14827 A2 | 7/2013 | WO
WO | 2013/100190 A1
2013/112053 A1 | 7/2013
8/2013 | | | 23507 A1
36740 A1 | 8/2013
9/2013 | WO | 2014/007620 A2 | 1/2014 | | EP 26 | 36741 A1 | 9/2013 | WO
WO | 2014/100714 A1
2014/144978 A2 | 6/2014
9/2014 | | | 36742 A1
35582 B1 | 9/2013
10/2013 | WO | 2014/153220 A2 | 9/2014 | | | 06407 B1 | 12/2013 | WO | 2014/153240 A2 | 9/2014 | | | 35583 B1 | 7/2014 | | OTHER PU | BLICATIONS | | | 88165 B1
35948 B1 | 7/2014
9/2014 | T.Ininomaitu | of Wootom, Avatualia | v Anadominah Ziokanhwin Laidan | | EP 27 | 99548 A2 | 11/2014 | | | v. Academisch Ziekenhuis Leiden,
2 pages, Patent Interference No. | | | 01618 A1
25085 A | 11/2014
11/2000 | | Ooc 197), dated Sep. | | | JP 2002-0 | 10790 A | 1/2002 | | | artin Gleave and Hideaki Miyake, | | | 29499 A | 9/2002
11/2002 | Appeal No. | 2005-2447, U.S. Ap | pl. No. 09/619,908 (Jan. 31, 2006) | | | 25582 A
40857 A | 11/2002 | | | .& Intern, pp. 12, Exhibit No. 1207 and 106,008 on Feb. 17, 2015. | | JP 2004-5 | 09622 A | 4/2004 | | | ing, Ex Parte Roderick John Scott, | | | 68815 A
01655 A | 12/2010
5/2011 | Appeal No. | 2008-004077, U.S. A | appl. No. 10/058,825 (Jan. 6, 2010) | | JP 047 | 77777 B2 | 9/2011 | , | , | & Interf.),pp. 21, Exhibit No. 1208 | | | 00235 A
46965 B2 | 10/2011
12/2011 | | | nd 106,008 on Feb. 17, 2015.
Deutekom Under 37 C.F.R. §1.132, | | | 38722 B2 | 2/2013 | | | Patent Reexamination Control No. | | JP 53 | 78423 B2 | 10/2013 | 90/011,320, | regarding U.S. Pa | t. No. 7,534,879, (University of | #### OTHER PUBLICATIONS Western Australia Exhibit 2133, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-10). Declaration of Judith van Deutekom, pp. 45, Exhibit No. 1125 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Dellorusso, Christiana et al., "Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin," PNAS, vol. 99(20):12979-12984 (2002). Deposition Transcript of Erik J. Sontheimer, Ph.D. of Jan. 21, 2015 (99 pages), Exhibit No. 1215 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Deposition Transcript of Matthew J. A. Wood, M.D., D. Phil., Jan. 22, 2015, including Errata Sheet, pp. 198, Exhibit No. 1007 filed in Interference 106,013 on Feb. 17, 2015. Deposition Transcript of Matthew J. A. Wood, M.D., D. Phil., pp. 196, Exhibit No. 1122 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Desalting of Oligonucleotides, pp. 2, Exhibit No. 1132 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Dirksen, Wessel P. et al., "Mapping the SF2/ASF Binding Sites in the Bovine Growth Hormone Exonic Splicing Enhancer," The Journal of Biological Chemistry, vol. 275(37):29170-29177 (2000). Dominski, Zbigniew et al., "Identification and Characterization by Antisense Oligonucleotides of Exon and Intron Sequences Required for Splicing," Molecular and Cellular Biology, vol. 14(11):7445-7454 (1994). Dominski, Zbigniew et al., "Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides," Proc. Natl. Acad. Sci. USA, vol. 90:8673-8677 (1993). Doran, Philip et al., "Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm," Proteomics, vol. 9:671-685, DOI 10.1002/pmic.200800441 (2009). Douglas, Andrew G.L. et al., "Splicing therapy for neuromuscular disease," Molecular and Cellular Neuroscience, vol. 56:169-185 (2013) (Exhibit No. 2005 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Doyle, Donald F., et al. (2001) "Inhibition of Gene Expression Inside Cells by PeptideNucleic Acids: Effect of mRNA Target Sequence, Mismatched Bases, and PNA Length," Biochemistry 40:53-64, (Exhibit No. 2123 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Dr. Wood Errata Sheet—Jan. 22, 2015, pp. 2, Exhibit No. 1227 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Dunckley, Matthew G. et al., "Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides," Human Molecular Genetics, vol. 5(1):1083-1090 (1995). Dunckley, Matthew G. et al., "Modulation of Splicing in the DMD Gene by Antisense Oligoribonucleotides," Nucleosides & Nucleotides, vol. 16(7-9):1665-1668 (1997). Eckstein, F., "Nucleoside Phosphorothioates," Ann. Rev. Biochem., vol. 54:367-402 (1985) (Exhibit No. 1028 filed in interferences 106008, 106007 on Nov. 18, 2014). Elayadi, Anissa N. et al., "Application of PNA and LNA oligomers to chemotherapy," Current Opinion in Investigational Drugs, vol. 2(4):558-561 (2001). Email from Danny Huntington to Interference Trial Section, dated Sep. 21, 2014, pp. 2, Exhibit No. 3001 filed in Interference 106,007, 106,008, and 106,013 on Sep. 26, 2014. Email From Sharon Crane to Interference Trial Section, dated Nov. 13, 2014, pp. 2, Exhibit No. 3002 filed in Interference 106,007, 106,008, and 106,013 on dated Nov. 14, 2014. Errata sheet for the Jan. 22, 2015 deposition of Matthew J. A. Wood, M.D., D. Phil., 2 pages, (Exhibit No. 2128 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Errata sheet for the Mar. 12, 2015 deposition of Erik J. Sontheimer, Ph.D., (University of Western Australia Exhibit 2149, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, p. 1). Errington, Stephen J. et al., "Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene," The Journal of Gene Medicine, vol. 5:518-527 (2003). European Office Action for Application No. 09752572.9, 5 pages, dated Feb. 29, 2012. European Response, Application No. 10004274.6, 7 pages, dated Nov. 5, 2013 (Exhibit No. 1060 filed in interferences 106008, 106007 on Nov. 18, 2014). European Response, Application No. 12198517.0, 7 pages, dated Oct. 21, 2014 (Exhibit No. 2084 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). European Response, Application No. 13160338.3, 4 pages, dated Jun. 26, 2014 (Exhibit No. 2085 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014).
European Search Report for Application No. 10004274.6, 12 pages, dated Jan. 2, 2013. European Search Report for Application No. 12162995.0, 11 pages, dated Jan. 15, 2013. European Search Report, EP15168694.6, dated Jul. 23, 2015, pp. 1-8 Excerpts from Prosecution History of U.S. Appl. No. 13/741,150: Notice of Allowance dated Mar. 16, 2015; List of References cited by Applicant and Considered by Examiner; Notice of Allowance and Fees due dated Sep. 18, 2014; Amendment in Response to Non-Final Office Action dated Jul. 11, 2014, (Academisch Ziekenhuis Leiden Exhibit 1229, filed Apr. 3, 2015 in Interference 106007 and 106008, pp. 1-133). Excerpts from Prosecution History of U.S. Appl. No. 13/826,880: Notice of Allowance dated Jan. 26, 2015 and Amendment in Response to Non-Final Office Action dates Oct. 15, 2014, (Academisch Ziekenhuis Leiden Exhibit 1228, filed Apr. 3, 2015 in Interference 106007 and 106008, pp. 1-16). Excerpts from Yeo (Ed.), "Systems Biology of RNA Binding Proteins," Adv. Exp. Med. Biol., Chapter 9, 56 pages (2014), (Academisch Ziekenhuis Leiden Exhibit 1232, filed Apr. 3, 2015 in Interference 106007 and 106008, pp. 1-56). Excerpts of SEC Form 8-K, dated Nov. 23 2014, for BioMarin Pharmaceutical Inc., (University of Western Australia Exhibit 2129, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-9). Exon 51 Internal Sequence Schematic, pp. 1, Exhibit No. 1224 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Exon 53 Internal Sequence Schematic, pp. 1, Exhibit No. 1225 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Fairclough et al., "Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches," Nature Reviews, vol. 14, pp. 373-378 (Jun. 2013), Exhibit No. 1112 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Fall, Abbie M. et al., "Induction of revertant fibres in the mdx mouse using antisense oligonucleotides," Genetic Vaccines and Therapy, vol. 4:3, doi:10.1186/1479-0556-4-3, 12 pages (2006). Federal Register, vol. 58, No. 183, pp. 49432-49434, Sep. 23, 1993 (6 pages); [Cited as: 58 FR 49432-01, 1993 WL 371451 (F.R.)], Exhibit No. 1221 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Federal Register, vol. 69, No. 155, pp. 49960-50020 dated Aug. 12, 2004 (62 pp.), Exhibit No. 1220 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. File Excerpt from AZL U.S. Appl. No. 11/233,495: Amendment After Non-Final Office Action, as-filed Nov. 1, 2010 (Exhibit No. 1085 filed in interferences 106008, 106007 on Dec. 23, 2014). File Excerpt from AZL U.S. Appl. No. 11/233,495: Claims examined in Non-Final Office Action, dated Dec. 1, 2008 (Exhibit No. 1079 filed in interferences 106008, 106007 on Dec. 23, 2014). File Excerpt from AZL U.S. Appl. No. 11/233,495: Final Office Action dated Aug. 31, 2010 (Exhibit No. 1086 filed in interferences 106008, 106007 on Dec. 23, 2014). File Excerpt from U.S. Appl. No. 11/233,495: Non-Final Office Action dated Dec. 1, 2008 and Final Office Action dated Jun. 25, 2009 (Exhibit No. 1078 filed in interferences 106008, 106007 on Dec. 23, 2014). #### OTHER PUBLICATIONS File Excerpt from U.S. Appl. No. 12/198,007: AZL's Preliminary Amendment and Response, as-filed Nov. 7, 2008 (Exhibit No. 1075 filed in interferences 106008, 106007 on Dec. 23, 2014). File Excerpt from U.S. Appl. No. 12/976,381: AZL's First Preliminary Amendment, as-filed Dec. 22, 2010 (Exhibit No. 1076 filed in interferences 106008, 106007 on Dec. 23, 2014). File Excerpts from U.S. Appl. No. No. 11/233,495: Response to Non-Final Office Action, as filed Jul. 26, 2011 (14 pages), Exhibit No. 1222 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. File Excerpts from U.S. Appl. No. 13/270,992 (UWA's U.S. Pat. No. 8,486,907): NFOA, dated Jul. 30, 2012; Applicant-Initiated Interview Summary, dated Nov. 8, 2012; Amendment, as filed Jan. 30, 2013; NOA, dated Apr. 4, 2013, Exhibit No. 1118 (122 pages) filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Flanagan, W. Michael, et al., "A cytosine analog that confers enhanced potency to antisense oligonucleotides," Proc. Nat'l Acad. Sci. USA, vol. 96, pp. 3513-3518 (Mar. 1999), Exhibit No. 1211 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Flanigan, Kevin M. et al., "Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne muscular dystrophy: Results of a double-blind randomized clinical trial," Neuromuscular Disorders, vol. 24:16-24 (2014) (Exhibit No. 2038 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Flanigan, Kevin M., et al. (2003) "Rapid Direct Sequence Analysis of the Dystrophin Gene," Am. J. Hum. Genet. 72:931-939, dated Feb. 17, 2015 (Exhibit No. 2120 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Fletcher, Sue et al., "Dystrophin Isoform Induction In Vivo by Antisense-mediated Alternative Splicing," Molecular Therapy, vol. 18(6):1218-1223 (2010). Fletcher, Sue et al., "Targeted Exon Skipping to Address 'Leaky' Mutations in the Dystrophin Gene," Molecular Therapy-Nucleic Acids, vol. 1, e48, doi:10.1038/mtna.2012.40, 11 pages (2012). Fletcher, Susan et al., "Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide," J. Gene Med., vol. 8:207-216 (2006). Fletcher, Susan et al., "Gene therapy and molecular approaches to the treatment of hereditary muscular disorders," Curr. Opin. Neurol., vol. 13:553-560 (2000). Foster, Helen et al., "Genetic Therapeutic Approaches for Duchenne Muscular Dystrophy," Human Gene Therapy, vol. 23:676-687 (2012). Fourth Declaration of Erik Sontheimer, Ph.D. (Pursuant to Bd.R. 41.155(b)(2) and SO ¶¶ 155.1.3 and 155.1.4), dated Mar. 9, 2015, (University of Western Australia Exhibit 2138, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-4). Fragall, Clayton T. et al., "Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching," BMC Medical Genetics, vol. 12:141, 8 pages (2011) (Exhibit No. 2019 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Fraley, Robert et al., "New generation liposomes: the engineering of an efficient vehicle for intracellular delivery of nucleic acids," Trends Biochem., vol. 6:77-80 (1981). Frazier, Kendall S. et al., "Species-specific Inflammatory Responses as a Primary Component for the Development of Glomerular Lesions in Mice and Monkeys Following Chronic Administration of a Second-generation Antisense Oligonucleotide," Toxicologica Pathology, 13 pages (2013). Friedmann, Theodore, "Progress Toward Human Gene Therapy," Science, vol. 244(4910):1275-1281 (1989). Gebski, Bianca L. et al., "Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle," Human Molecular Genetics, vol. 12(15):1801-1811 (2003). Generic Method for Average Mass Determination Using LC-UV-MS in the Negative Mode, pp. 15, Exhibit No. 1145 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Generic UPLC Purity Method for Oligonucleotides (19- to 25-mers), pp. 18, Exhibit No. 1156 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Gennaro, Alfonso R., (ed.), Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing, Co., Easton PA, 2020 pages (1990). Giles, Richard V. et al., "Antisense Morpholino Oligonucleotide Analog Induces Missplicing of C-myc mRNA," Antisense & Nucleic Acid Drug Development, vol. 9:213-220 (1999). GlaxoSmithKline Press Release, Issued in London, UK, dated Jun. 27, 2013 (5 pages), Exhibit No. 1202 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. GlaxoSmithKline, "GSK and Prosensa announce start of Phase III study of investigational Duchenne Muscular Dystrophy medication," press release, 6 pages, dated Jan. 19, 2011 (Exhibit No. 2060 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). GlaxoSmithKline, Prosensa regains rights to drisapersen from GSK and retains rights to all other programmes for the treatment of Duchenne muscular dystrophy (DMD), press release, 4 pages, dated Jan. 13, 2014 (Exhibit 2040 in Interferences 106007, 106008, and 106013 on Nov. 18, 2014). Goemans, Nathalie M. et al., "Systemic Administration of PRO051 in Duchenne's Muscular Dystrophy," the New England Journal of Medicine, vol. 364:1513-1522 (2011) (Exhibit No. 2036 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Gordon, Peter M. et al., "Metal ion catalysis during the exonligation step of nuclear pre-mRNA splicing: Extending the parallels between the spliceosome and group II introns," RNA, vol. 6:199-205 (2000) (Exhibit No. 1055 filed in interferences 106008, 106007 on Nov. 18, 2014). Gordon, Peter M., et al., "Kinetic Characterization of the Second Step of Group II Intron Splicing: Role of Metal Ions and the Cleavage Site 2'-OH in Catalysis," Biochemistry, vol. 39, pp. 12939-12952 (2000), Exhibit No. 1188 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Goyenvalle, Aurelie et al., "Prevention of Dystrophic Pathology in Severely Affected Dystrophin/Utrophin-deficient Mice by Morpholino-oligomer-mediated Exon-skipping," Molecular Therapy, vol. 18(1):198-205 (2010). Hammond, Suzan M. et al., "Correlating In Vitro Splice Switching Activity With Systemic In Vivo Delivery Using Novel ZEN-modified Oligonucleotides," Molecular Therapy—Nucleic Acids, vol. 3:1, 11 pages (2014) (Exhibit No. 2011 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Hammond, Suzan M., et al., "Genetic therapies for RNA missplicing diseases," Cell, vol. 27, No. 5, pp. 196-205 (May 2011), Exhibit No. 1113 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Hammond, Suzan M., et al., "PRO-051, an antisense oligonucleotide for the potential treatment of Duchenne muscular dystrophy," Curr. Opinion Mol. Therap., vol. 12, No. 4, pp. 478-486 (2010), Exhibit No. 1121 filed in interferences 106,007 and
106,008 on Feb. 13, 2015 Harding, PL et al., "The Influence of Antisense Oligonucleotide Length on Dystrophin Exon Skipping," Molecular Therapy, vol. 15(1):157-166 (2007) (Exhibit No. 1030 filed in interferences 106008, 106007 on Nov. 18, 2014). Harel-Bellan, Annick et al., "Specific Inhibition of c-myc Protein Biosynthesis Using an Antisense Synthetic Deoxy-Oligonucleotide in Human T Lymphocytes," The Journal of Immunology, vol. 140(7):2431-2435 (1988). Havenga, M.J.E., et al., "Exploiting the Natural Diversity in Adenovirus Tropism for Therapy and Prevention of Disease," J. Virol., vol. 76, No. 9, pp. 4612-4620 (May 2002), Exhibit No. 1123 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. Heasman, Janet, "Morpholino Oligos: Making Sense of Antisense?" Developmental Biology, vol. 243:209-214 (2002). Heemskerk, Hans A. et al., "In vivo comparison of 2'-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping," The Journal of Gene Medicine, vol. 11:257-266 (2009) (Exhibit No. 2020 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). #### OTHER PUBLICATIONS Heid, Christian A. et al., "Real Time Quantitative PCR," Genome Research, vol. 6:986-994 (1996) (Exhibit No. 1061 filed in interferences 106008, 106007 on Nov. 18, 2014). Herschlag, Daniel et al., "Contributions of 2' Hydroxyl Groups of the RNA Substrate to Binding and Catalysis by the Tetrahymena Ribozyme: An Energetic Picture of an Active Site Composed of RNA," Biochemistry, vol. 32:8299-8311 (1993) (Exhibit No. 1031 filed in interferences 106008, 106007 on Nov. 18, 2014). Hudziak, Robert M. et al., "Antiproliferative Effects of Steric Blocking Phosphorodiamidate Morpholino Antisense Agents Directed against c-myc," Antisense & Nucleic Acid Drug Development, vol. 10:163-176 (2000) (Exhibit No. 1032 filed in interferences 106008, 106007 on Nov. 18, 2014). Hudziak, Robert M. et al., "Resistance of Morpholino Phosphorodiamidate Oligomers to Enzymatic Degradation," Antisense & Nucleic Acid Drug Development, vol. 6:267-272 (1996). Hussey, Nicole D. et al., "Analysis of five Duchenne muscular dystrophy exons and gender determination using conventional duplex polymerase chain reaction on single cells," Molecular Human Reproduction, vol. 5(11):1089-1094 (1999). Interim Guidance on Patent Subject Matter Eligibility ("the December Guidance," 16 pages, (Exhibit No. 2119 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. International Patent Application No. PCT/AU2000/00693 ("Wraight"), published as WO 00/78341 on Dec. 28, 2000, 201 pages, (Exhibit No. 2125 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2009/061960, 8 pages, dated Apr. 26, 2011. International Preliminary Report on Patentability for Application No. PCT/AU2005/000943, 8 pages, dated Dec. 28, 2006. International Preliminary Report on Patentability, PCT/US2013/077216, dated Jun. 23, 2015, pp. 1-7. International Preliminary Report on Patentability, PCT/US2014/029610, dated Jul. 1, 2015, pp. 1-122. International Search Report and Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/US2013/077216, 5 pages, dated Mar. 27, 2014. International Search Report and Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/US2014/029610, 6 pages, dated Sep. 18, 2014. International Search Report and Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/US2014/029689, 8 pages, dated Oct. 21, 2014. International Search Report and Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/US2014/029766, 8 pages, dated Oct. 21, 2014. International Search Report for Application No. PCT/AU2005/000943, 5 pages, dated Oct. 20, 2005. International Search Report for Application No. PCT/US01/14410, 5 pages, dated Mar. 6, 2002. International Search Report for Application No. PCT/US2009/061960, 9 pages, dated Apr. 6, 2010. Invitation to pay fees and Partial International Search Report issued by the International Search Authority in International Patent Application No. PCT/US2014/029689, 8 pages, dated Jul. 29, 2014. ISIS Pharmaceuticals website, 2 pages, http://www.isispharm.com/ Pipeline/Therapeutic-Areas/Other.htm (2014) (Exhibit No. 2021 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Iversen, Patrick L. et al., "Efficacy of Antisense Morpholino Oligomer Targeted to c-myc in Prostate Cancer Xenograft Murine Model and a Phase I Safety Study in Humans," Clinical Cancer Research, vol. 9:2510-2519 (2003). Jarver, Peter et al., "A Chemical View of Oligonucleotides for Exon Skipping and Related Drug Applications," Nucleic Acid Therapeutics, vol. 24(1):37-47 (2014) (Exhibit No. 2061 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Jason, Tracey L.H. et al., "Toxicology of antisense therapeutics," Toxicology and Applied Pharmacology, vol. 201:66-83 (2004) (Exhibit No. 2027 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Jearawiriyapaisarn, Natee et al., "Long-term improvement in mdx cardiomyopathy after therapy with peptide-conjugated morpholino oligomers," Cardiovascular Research, vol. 85:444-453 (2010). Jearawiriyapaisarn, Natee et al., "Sustained Dystrophin Expression Induced by Peptide-conjugated Morpholino Oligomers in the Muscles of mdx Mice," Mol. Ther, vol. 16(9):1624-1629 (2008). Job Posting by Sarepta for "Scientist II, Muscle Biology" (2 pages), (Academisch Ziekenhuis Leiden Exhibit 1233, filed Apr. 3, 2015 in Interference 106007 and 106008). Jones, Simon S. et al., "The Protection of Uracil and Guanine Residues in Oligonucleotide Synthesis," Tetrahedron Letters, vol. 22(47):4755-4758 (1981). Karlen, Yann et al., "Statistical significance of quantitative PCR," BMC Bioinformatics, 8:131, 16 pages (2007) (Exhibit No. 1033 filed in interferences 106008, 106007 on Nov. 18, 2014). Karras, James G. et al., "Deletion of Individual Exons and Induction of Soluble Murine Interleukin-5 Receptor-alpha Chain Expression through Antisense Oligonucleotide-Mediated Redirection of PremRNA splicing," Molecular Pharmacology, vol. 58:380-387 (2000). Kaye, Ed, "Results of the Eteplirsen Phase 2b and Phase 2b Extension Study in Duchenne Muscular Dystrophy," 8th Annual Meeting of the Oligonucleotide Therapeutics Society, Session 9: Advances in Oligonucleotide Clinical Development II, p. 48 (2012). Kinali, Maria et al., "Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study," Lancet Neurol., vol. 8:918-928 (2009). King et al., "A Dictionary of Genetics," Oxford University Press, 4th Ed. (1990), Exhibit No. 1189 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Koenig, M. et al., "The Complete Sequence of Dystrophin Predicts a Rod-Shaped Cytoskeleton Protein," Cell, vol. 53:219-228 (1988) (Exhibit No. 1010 filed in interferences 106008, 106007 on Nov. 18, 2014). Koenig, M. et al., "The Molecular Basis for Duchenne versus Becker Muscular Dystrophy: Correlation of Severity with Type of Deletion," Am. J. Hum. Genet, vol. 45:498-506 (1989) (Exhibit No. 1011 filed in interferences 106008, 106007 on Nov. 18, 2014). Koshkin, Alexei A. et al., "LNA (Locked Nucleic Acids): Synthesis of the Adenine, Cytosine, Guanine, 5-Methylcytosine, Thymine and Uracil Bicyclonucleoside Monomers, Oligomerisation, and Unprecedented Nucleic Acid Recognition," Tetrahedron, vol. 54:3607-3630 (1998) (Exhibit No. 2007 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Kurreck J., "Antisense Technologies: Improvement Through Novel Chemical Modifications", European Journal of Biochemistry, vol. 270(8):1628-1644 (2003). Lab-on-a-Chip Data, pp. 28, Exhibit No. 1185 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Laboratory Notebook Entry (Exon 51 Experiments): RT-PCR Analysis of 8036 Cells, pp. 2, Exhibit No. 1179 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Laboratory Notebook Entry (Exon 51 Experiments): RT-PCR Analysis of KM155.C25 Cells, pp. 2, Exhibit No. 1178 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Laboratory Notebook Entry (Exon 51 Experiments): Transfection of 8036 Cells, pp. 1, Exhibit No. 1172 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Laboratory Notebook Entry (Exon 51 Experiments): Transfection of KM155.C25 Cells, pp. 1, Exhibit No. 1171 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Laboratory Notebook Entry (Exon 53 Experiments): RT-PCR Analysis of KM155.C25 Cells, pp. 2, Exhibit No. 1180 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Laboratory Notebook Entry (Exon 53 Experiments): RT-PCR Analysis of R1809 Cells, pp. 2, Exhibit No. 1181 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. #### OTHER PUBLICATIONS Laboratory Notebook Entry (Exon 53 Experiments): Transfection of KM155.C25 Cells, pp. 1, Exhibit No. 1173 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Laboratory Notebook Entry (Exon 53 Experiments): Transfection of R1809 Cells, pp. 1, Exhibit No. 1174 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Laboratory Notebook Entry: General RNA recovery, 1 Page, Exhibit No. 1176 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Laboratory Notebook Entry: Lab-on-a-Chip Analysis, pp. 3, Exhibit No. 1184 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Larsen et al., "Antisense properties of peptide nucleic acid," Biochim. Et Biophys. Acta, vol. 1489, pp. 159-166 (1999), Exhibit No. 1190 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. List of Publications for Matthew J. A. Wood, M.D., D. Phil., 11
pages, (Exhibit No. 2124 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Liu, Hong-Xiang et al., "Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins," Genes & Development, vol. 12:1998-2012 (1998). Lu et al, "Massive Idiosyncratic Exon Skipping Corrects the Nonsense Mutation in Dystrophic Mouse Muscle and Produces Functional Revertant Fibers by Clonal Expansion," The Journal of Cell Biology, vol. 148(5): 985-995, Mar. 6, 2000 ("Lu et al.") (Exhibit No. 1082 filed in interferences 106008, 106007 on Dec. 23, 2014). Lu, Qi Long et al., "Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse," Nature Medicine, vol. 9(8):1009-1014 (2003). Lu, Qi-long et al., "What Can We Learn From Clinical Trials of Exon Skipping for DMD?" Molecular Therapy—Nucleic Acids, vol. 3:e152, doi:10.1038/mtna.2014.6, 4 pages (2014). Lyophilisation of Oligonucleotides, pp. 2, Exhibit No. 1133 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Mann, Christopher J. et al., "Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse," PNAS, vol. 98(1):42-47 (2001). Mann, Christopher J. et al., "Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy," The Journal of Gene Medicine, vol. 4:644-654 (2002). Mannino, Raphael J. et al., "Liposome Mediated Gene Transfer," BioTechniques, vol. 6(7):682-690 (1988). Manual of Patent Examining Procedure 2308.02 (6th ed., rev. 3, Jul. 1997), (University of Western Australia Exhibit 2143, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-2). Marshall, N.B. et al., "Arginine-rich cell-penetrating peptides facilitate delivery of antisense oligomers into murine leukocytes and alter pre-mRNA splicing," Journal of Immunological Methods, vol. 325:114-126 (2007). Mathews et al., "Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure," J. Mol. Biol. 288:911-940 (1999), (University of Western Australia Exhibit 2131, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-31). Mathews et al., "Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure," J. Mol. Biol., vol. 288, pp. 911-940 (1999), Exhibit No. 1212 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Matsuo, Masafumi et al., "Exon Skipping during Splicing of Dystrophin mRNA Precursor due to an Intraexon Deletion in the Dystrophin Gene of Duchenne Muscular Dystrophy Kobe," J. Clin. Invest, vol. 87:2127-2131 (1991). Matsuo, Masafumi et al., "Treatment of Duchenne Muscular Dystrophy with Oligonucleotides against an Exonic Splicing Enhancer Sequence," Basic Appl. Myol., vol. 13(6):281-285 (2003). Matsuo, Masafumi, "Duchenne and Becker Muscular Dystrophy: From Gene Diagnosis to Molecular Therapy," IUBMB Life, vol. 53:147-152 (2002). Matsuo, Masafumi, "Duchenne/Becker muscular dystrophy: from molecular diagnosis to gene therapy," Brain & Development, vol. 18:167-172 (1996). Matteucci, Mark, "Structural modifications toward improved antisense oligonucleotides," Perspectives in Drug Discovery and Design, vol. 4:1-16 (1996). McCarville, M. Beth et al., "Rhabdomyosarcoma in Pediatric Patients: The Good, the Bad, and the Unusual," AJR, vol. 176:1563-1569 (2001) (Exhibit No. 1034 filed in interferences 106008, 106007 on Nov. 18, 2014). WO 2013/112053 A1, (University of Western Australia Exhibit 2130, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-177). Wolff, Jon A. et al., "Direct Gene Transfer into Mouse Muscle in Vivo," Science, vol. 247:1465-1468 (1990). Wong, Marisa L. et al., "Real-time PCR for mRNA quantitation," BioTechniques, vol. 39:75-85 (2005) (Exhibit No. 1066 filed in interferences 106008, 106007 on Nov. 18, 2014). Wood, "Toward an Oligonucleotide Therapy for Duchenne Muscular Dystrophy: A Complex Development Challenge," Science Translational Medicine, vol. 2, No. 25, pp. 1-6 (Mar. 2010), Exhibit No. 1116 filed in interferences 106,007 and 106,008 on Feb. 17, 2015,Doc 335. Written Opinion for Application No. PCT/AU2010/001520, 6 pages, dated Jan. 21, 2011. Wu, B. et al., "Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino," Gene Therapy, vol. 17:132-140 (2010). Wu, Bo et al., "Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer," PNAS, vol. 105(39):14814-14819 (2008). Wu, Bo et al., "Targeted Skipping of Human Dystrophin Exons in Transgenic Mouse Model Systemically for Antisense Drug Development," PLoS One, vol. 6(5):e19906, 11 pages (2011). Wu, George Y. et al., "Receptor-mediated Gene Delivery and Expression in Vivo," The Journal of Biological Chemistry, vol. 263(29):14621-14624 (1988). Wu, George Y. et al., "Receptor-mediated in Vitro Gene Transformation by a Soluble DNA Carrier System," The Journal of Biological Chemistry, vol. 262(10):4429-4432 (1987). Wyatt et al. "Site-specific cross-linking of mammalian U5 snRNP to the 5' splice site before the first step of pre-mRNA splicing," Genes & Development, vol. 6, pp. 2542-2553 (1992), Exhibit No. 1198 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Yin et al., "A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice," Human Mol. Gen., vol. 18, No. 22, pp. 4405-4414 (2009), Exhibit No. 1200 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Yin et al., "Cell Penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function," Human Mol. Gen., vol. 17, No. 24, pp. 3909-3918 (2008), Exhibit No. 1199 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Yin et al., "Functional Rescue of Dystrophin-deficient mdx Mice by a ChimericPeptide-PMO," Mol. Therapy, vol. 18, No. 10, pp. 1822-1829 (Oct. 2010), Exhibit No. 1117 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Yokota et al., "Efficacy of Systematic Morpholino Exon-Skipping in Duchenne Dystrophy Dogs," American Neurological Assoc., vol. 65, No. 6, pp. 667-676 (Jun. 2009), Exhibit No. 1214 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Zoltek Corp. v. U.S., 95 Fed. Cl. 681 (2011), 23 pages, (Academisch Ziekenhuis Leiden Exhibit 1236, filed May 5, 2015 in Interference 106007 and 106008). Transfection of AON, pp. 1, Exhibit No. 1170 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. U.S. Food and Drug Administration Statement, dated Dec. 30, 2014 (2 pages), Exhibit No. 1204 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. U.S. Appl. No. 12/198,007, filed Aug. 25, 2008 ("the '007 Application") (Exhibit No. 1073 filed in interferences 106008, 106007 on Dec. 23, 2014). #### OTHER PUBLICATIONS U.S. Appl. No. 12/976,381, filed Dec. 22, 2010 ("the '381 Application") (Exhibit No. 1074 filed in interferences 106008, 106007 on Dec. 23, 2014). U.S. Patent Application Publication No. 2001/0056077 ("Matsuo") 10 pages, (Exhibit No. 1080 filed in interferences 106008, 106007 on Dec. 23, 2014). U.S. Patent Application Publication No. 2002/0049173 ("Bennett et al.") 50 pages, (Exhibit No. 1081 filed in interferences 106008, 106007 on Dec. 23, 2014). U.S. Pat. No. 5,190,931 ("the '931 Patent") 22 pages,(Exhibit No. 1069 filed in interferences 106008, 106007 on Dec. 23, 2014). U.S. Pat. No. 7,001,761 (the "Xiao" Patent) 64 pages, (Exhibit No. 1070 filed in interferences 106008, 106007 on Dec. 23, 2014). University of Western Australia Objections to Opposition Evidence, served on Feb. 24, 2015 filed in Interference No. 106,007, Exhibit 2150, filed Apr. 10, 2015 in Interference Nos. 106007 and 106008, pp. 1-15 University of Western Australia Objections to Opposition Evidence, served on Feb. 24, 2015, filed in Interference No. 106,008, Exhibit 2151, filed Apr. 10, 2015, in Interference Nos. 106007and 106008, pp. 1-15. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden List of Exhibits (as of Apr. 3, 2015), filed in Patent Interference No. 106,007, Apr. 3, 2015, pp. 1-18, (Doc 423). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden List of Exhibits (as of Apr. 3, 2015), filed in Patent Interference No. 106,008, Apr. 3, 2015, pp. 1-18 (Doc 435). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden List of Exhibits, 18 pages, Patent Interference No. 106,007, (Doc 391), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden List of Exhibits, 18 pages, Patent Interference No. 106,008, (Doc 398), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden List of Exhibits, 3 pages, Patent Interference No. 106,013, (Doc 147), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Notice of Service of Supplemental Evidence, 3 pages, Patent Interference No. 106,007 (Doc 414), dated Mar. 9, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Notice of Service of Supplemental Evidence, 3 pages, Patent Interference No. 106,008 (Doc 422), dated Mar. 9, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Opposition 1 (35 U.S.C. § 112(a)), 83 pages, Patent Interference No. 106,008, (Doc 400), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Opposition 1 (35 U.S.C. § 112(a)), 93 pages, Patent Interference No. 106,007, (Doc 392), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden
Opposition 1 (Standing Order ¶ 203.1 and 37 C.F.R. § 41.202(a) and (e)), 20 pages, Patent Interference No. 106,013, (Doc 148), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Opposition 2 (Indefiniteness), 31 pages, Patent Interference No. 106,007, (Doc 396), dated Feb. 17, 2015 University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Opposition 2 (Indefiniteness), 32 pages, Patent Interference No. 106,008, (Doc 401), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Opposition 3 (35 U.S.C. §135(b)), 44 pages, Patent Interference No. 106,008, (Doc 397), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Opposition 3 (Standing Order § 203.1 and 37 C.F.R. § 41.202(a) and (e)), 20 pages, Patent Interference No. 106,007, (Doc 389), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Reply 1 (For Judgment that UWA'a Claims are Unpatentable Under 35 U.S.C. §§ 102 and 103), dated Apr. 3, 2015, filed in Patent Interference No. 106008, pp. 1-17 (Doc 431). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Reply 1 (For Judgment that UWA's Claims are Unpatentable Under 35 U.S.C. §§ 102 and 103), dated Apr. 3, 2015, filed in Patent Interference No. 106007, pp. 1-17 (Doc 424). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Reply 2 (To Deny the Benefit of Au 2004903474), dated Apr. 3, 2015, filed in Patent Interference No. 106007, pp. 1-11(Doc 425). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Reply 2 (To Deny the Benefit of AU 2004903474), dated Apr. 3, 2015, filed in Patent Interference No. 106008, pp. 1-12 (Doc 432). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Reply 3 (For Judgment of Unpatentability based on Myriad) dated Apr. 3, 2015, filed in Patent Interference No. 106007, pp. 1-12 (Doc 426). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Reply 3 (For Judgment of Unpatentability based on Myriad) dated Apr. 3, 2015, filed in Patent Interference No. 106008, pp. 1-13 (Doc 433). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Reply 4 (In Support of Responsive Motion 4 to Add Two New Claims) dated Apr. 3, 2015, filed in Patent Interference No. 106007, pp. 1-17 (Doc 427). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Reply 4 (In Support of Responsive Motion 4 to Add Two New Claims) dated Apr. 3, 2015, filed in Patent Interference No. 106008, pp. 1-17 (Doc 434). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Request for Oral Argument, filed in Patent Interference No. 106,007, Apr. 10, 2015, pp. 1-3 (Doc 454). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Request for Oral Argument, filed in Patent Interference No. 106,008, Apr. 10, 2015, pp. 1-3 (Doc 462). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Responsive Motion 4 (To Add Two New Claims), 57 pages, Patent Interference No. 106,008, (Doc 245), dated Dec. 23, 2014. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Responsive Motion 4 (To Add Two New Claims), 65 pages, Patent Interference No. 106,007, (Doc 241), dated Dec. 23, 2014. University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden Statement Regarding Oral Argument, filed in Patent Interference No. 106,013, Apr. 10, 2015, pp. 1-3 (Doc 189). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden's List of Exhibits as of May 5, 2015, filed in Patent Interference No. 106,007, May 5, 2015, pp. 1-18 (Doc 466). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden's List of Exhibits as of May 5, 2015, filed in Patent Interference No. 106,008, May 5, 2015, pp. 1-18 (Doc 474). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden's Opposition 4 (To Not Exclude Evidence), filed in Patent Interference No. 106,007, May 5, 2015, pp. 1-22 (Doc 465). #### OTHER PUBLICATIONS University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden's Opposition 4 (To Not Exclude Evidence), filed in Patent Interference No. 106,008, May 5, 2015, pp. 1-21 (Doc 473). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden's Second Supplemental Notice of Real Party in Interest, filed in Patent Interference No. 106,007, May 28, 2015, pp. 1-3, (Doc 468). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden's Second Supplemental Notice of Real Party in Interest, filed in Patent Interference No. 106,008, May 28, 2015, pp. 1-3, (Doc 476). University of Western Australia v. Academisch Ziekenhuis Leiden, Academisch Ziekenhuis Leiden's Second Supplemental Notice of Real Party in Interest, filed in Patent Interference No. 106013, May 28, 2015, pp. 1-3, (Doc 191). University of Western Australia v. Academisch Ziekenhuis Leiden, Academish Ziekenhuis Leiden Supplemental Notice of Real Party in Interest, pp. 3, Doc 149, Patent Interference No. 106,013 dated Feb. 23, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academish Ziekenhuis Leiden Supplemental Notice of Real Party in Interest, pp. 3, Doc 413, Patent Interference No. 106,007 dated Feb. 23, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Academish Ziekenhuis Leiden Supplemental Notice of Real Party in Interest, pp. 3, Doc 421, Patent Interference No. 106,0008 dated Feb. 23, 2015 University of Western Australia v. Academisch Ziekenhuis Leiden, Amendment and Response, U.S. Appl. No. 11/233,495, filed Jan. 22, 2014, 8 pages, (Exhibit No. 2117 filed in interferences 106,007 and 106, 008, on Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Annotated Claims, Patent Interference No. 106,007, 15 pages, dated Aug. 15, 2014 (Doc 15). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Annotated Claims, Patent Interference No. 106,008, 14 pages, dated Aug. 21, 2014 (Doc 14). Saito, T. et al., "First-in-Human Study of NS-065/NCNP-01; the Morpholino Based Antisense Oligonucleotide for Exon 53 Skipping in Duchenne Muscular Dystrophy," ASGCT meeting , May 13, 2015, Abstract [136] 1 page. Saito, T. et al., "First-in-Human Study of NS-065/NCNP-01; the Morpholino Based Antisense Oligonucleotide for Exon 53 Skipping in Duchenne Muscular Dystrophy," ASGCT meeting, May 13, 2015, pp. 1-11. Sarepta Therapeutics Press Release, dated Jan. 12, 2015, Exhibit No. 1119 filed in interferences 106,007 and 106,008 on Feb. 17, 2015 Sarepta, "AVI BioPharma Initiates Dosing in Phase 2 Study of Eteplirsen in Duchenne Muscular Dystrophy Patients," press release, 4 pages, dated Aug. 15, 2011 (Exhibit No. 2082 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Sarepta, "Sarepta Therapeutics Announces Eteplirsen Demonstrates Continued Stability on Walking Test through 120 Weeks in Phase lib Study in Duchenne Muscular Dystrophy," press release, 3 pages, dated Jan. 15, 2014 (Exhibit No. 2034 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Sarepta, "Sarepta Therapeutics Reports Long-Term Outcomes through 144 Weeks from Phase IIb Study of Eteplirsen in Duchenne Muscular Dystrophy," press release, http://investorrelations.sarepta.com/phoenix.zhtml?c=64231&p=irol-newsArticle&smp; id=1946426, 4 pages, dated Jul. 10, 2014. Scully, Michele et al., "Review of Phase II and Phase III Clinical Trials for Duchenne Muscular Dystrophy", Expert Opinion on Orphan Drugs, vol. 1(1):33-46 (2013). Second Preliminary Amendment filed in U.S. Appl. No. 13/550,210, 5 pages, dated Jan. 3, 2013 (Exhibit No. 2062 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Second Written Opinion for Application No. PCT/AU2010/001520, 7 pages, dated Oct. 13, 2011. Semi Quantitative Lab-on-Chip Analysis of Second PCR Product, pp. 1, Exhibit No. 1183 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Sequence Listing—U.S. Appl. No. 13/550,210, filed Jul. 16, 2012 (9 pages), Exhibit No. 1205 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Shabanpoor et al., "Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy," Nucleic Acids Res., pp. 1-11 (Dec. 2014), Exhibit No. 1114 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Shapiro, Marvin B. et al., "RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression," Nucleic Acids Research, vol. 15(17):7155-7174 (1987) Sherratt, Tim G. et al., "Exon Skipping and Translation in Patients with Frameshift Deletions in the Dystrophin Gene," Am. J. Hum. Genet., vol. 53:1007-1015 (1993). Shiga, Nobuyuki et al., "Disruption of the Splicing Enhancer Sequence within Exon 27 of the Dystrophin Gene by a Nonsense Mutation Induced Partial Skipping of the Exon and Is Responsible for Becker Muscular Dystrophy," J. Clin. Invest., vol. 100(9):2204-2210 (1997). Shimizu, Miho et al., "Oligo(2'-O-methyl)ribonucleotides Effective probes for duplex DNA," FEBS Letters, vol. 302 (2):155-158 (1992) (Exhibit No. 1035 filed in interferences 106008, 106007 on Nov. 18, 2014). Siemens Healthcare Diagnostics, Inc. v. Enzo Life Sciences, Inc., 2013 WL 4411227, *11 [Parallel cite: U.S.D.C., D.
Mass., Civil No. 10-40124-FDS], Decided Aug. 14, 2013 (12 pages); [Cited as: 2013 WL 4411227], Exhibit No. 1210 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Sierakowska, Halina et al., "Repair of thalassemic human betaglobin mRNA in mammalian cells by antisense oligonucleotides," Proc. Natl. Acad. Sci. USA, vol. 93:12840-12844 (1996). Sontheimer et al., "Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome," Genes & Development, vol. 13, pp. 1729-1741 (1999), Exhibit No. 1195 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Sontheimer et al., "Three Novel Functional Variants of Human U5 Small Nuclear RNA," vol. 12, No. 2, pp. 734-746 (Feb. 1992), Exhibit No. 1194 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015 Sontheimer, Erik J. et al., "Metal ion catalysis during splicing of premessenger RNA," Nature, vol. 388:801-805 (1997) (Exhibit No. 1036 filed in interferences 106008, 106007 on Nov. 18, 2014). Sontheimer, Erik J. et al., "The U5 and U6 Small Nuclear RNAs as Active Site Components of the Spliceosome," Science, vol. 262:1989-1997 (1993) (Exhibit No. 1058 filed in interferences 106008, 106007 on Nov. 18, 2014). Standard Operating Procedure FPLC Desalting, pp. 6, Exhibit No. 1144 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Stanton, Robert et al., "Chemical Modification Study of Antisense Gapmers", Nucleic Acid Therapeutics, vol. 22(5): 344-359 (2012). Stein, CA, "Delivery of antisense oligonucleotides to cells: a consideration of some of the barriers," Monographic supplement series: Oligos & Peptides—Chimica Oggi—Chemistry Today, vol. 32(2):4-7 (2014) (Exhibit No. 2022 filed in interferences 106008, 1060013, 106007 on Nov. 18, 2014). Stein, Cy A. et al., "Therapeutic Oligonucleotides: The Road Not Taken," Clin. Cancer Res., vol. 17(20):6369-6372 (2011) (Exhibit No. 2026 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014) Stein, David et al., "A Specificity Comparison of Four Antisense Types: Morpholino, 2'-O-Methyl RNA, DNA, and PHosphorothioate DNA," Antisense & Nucleic Acid Drug Development, vol. 7:151-157 (1997). Summary of Professional Experience (Dr. Erik J. Sontheimer), pp. 4, Exhibit No. 1223 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. #### OTHER PUBLICATIONS Summerton, James et al., "Morpholino and Phosphorothioate Antisense Oligomers Compared in Cell-Free and In-Cell Systems," Antisense & Nucleic Acid Drug Development, vol. 7:63-70 (1997). Summerton, James et al., "Morpholino Antisense Oligomers: Design, Preparation, and Properties," Antisense & Nucleic Acid Drug Development, vol. 7:187-195 (1997). Summerton, James, "Morpholino antisense oligomers: the case for an Rnase H-independent structural type," Biochimica et Biophysica Acta, vol. 1489:141-158 (1999) (Exhibit No. 1038 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Supplementary European Search Report for Application No. 10829367.1, 8 pages, dated May 22, 2013. Suter et al., "Double-target antisense U7 snRNAs promote efficient skipping of an aberrant exon in three human Beta-thalassemic mutations," 8:13 Human Molecular Genetics 2415-2423 (1999) (Exhibit No. 1083 filed in interferences 106008, 106007 on Dec. 23, 2014). T Hoen, Peter A.C. et al., "Generation and Characterization of Transgenic Mice with the Full-length Human Dmd Gene," The Journal of Biological Chemistry, vol. 283(9):5899-5907 (2008) Exhibit No. 2030 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Table 1: Primer and Product Details for Exon 51 and 53 Reports on AONs of 20 to 50 Nucleotides dd Jan. 7, 2015, pp. 1, Exhibit No. 1177 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Takeshima et al., "Oligonucleotides against a splicing enhancer sequence led to dystrophin production in muscle cells from a Duchenne muscular dystrophy patient," Brain & Dev., vol. 23, pp. 788-790 (2001), Exhibit No. 1196 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Takeshima, Yasuhiro et al., "Modulation of In Vitro Splicing of the Upstream Intron by Modifying an Intra-Exon Sequence Which Is Deleted from the Dystrophin Gene in Dystrophin Kobe," J. Clin. Invest., vol. 95:515-520 (1995). Tanaka, Kenji et al., "Polypurine Sequences within a Downstream Exon Function as a Splicing Enhancer," Molecular and Cellular Biology, vol. 14(2):1347-1354 (1994). Thanh, Le Thiet et al., "Characterization of Revertant Muscle Fibers in Duchenne Muscular Dystrophy, Using Exon-Specific Monoclonal Antibodies against Dystrophin," Am. J. Hum. Genet., vol. 56:725-731 (1995). The Regents of the University of California v. Dako North America, Inc., U.S.D.C., N.D. California, No. C05-03955 MHP, Apr. 22, 2009 (2009 WL 1083446 (N.D.Cal.), Exhibit No. 1206 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Tian, Xiaobing et al., "Imaging Oncogene Expression," Ann. N.Y. Acad. Sci., vol. 1002:165-188 (2003) (Exhibit No. 2029 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Transcript of 2nd Deposition of Erik J. Sontheimer, Ph.D., dated Mar. 12, 2015, (Academisch Ziekenhuis Leiden Exhibit 1231, filed Apr. 3, 2015 in Interference 106007 and 106008, pp. 1-185). Transcript of 2nd Deposition of Matthew J.A. Wood, M.D., D. Phil, dated Mar. 5, 2015, (Academisch Ziekenhuis Leiden Exhibit 1230, filed Apr. 3, 2015 in Interference 106007 and 106008, pp. 1-117). Transcript of Dec. 12, 2014 Teleconference with Administrative Patent Judge Schafer (rough draft) (previously filed in Int. No. 106,008 as Ex. 2114), pp. 28 Exhibit No. 1001 filed in Interference 106,013 on Feb. 17, 2015. Transcript of the Jan. 21, 2015 deposition of Erik Sontheimer, Ph.D., Patent Interference Nos. 106,007 and 106,008, 98 pages, dated Jan. 21, 2015 (Exhibit No. 2122 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Transcript of the Mar. 11, 2015 deposition of Judith van Deutekom, Ph.D., (University of Western Australia Exhibit 2141, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-168). Transcript of the Mar. 12, 2015 deposition of Erik J. Sontheimer, Ph.D., (University of Western Australia Exhibit 2142, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-183). Transcript of the Mar. 5, 2015 deposition of Matthew J. A. Wood, M.D., D. Phil., (University of Western Australia Exhibit 2146, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-115). McClorey, G. et al., "Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD," Gene Therapy, vol. 13:1373-1381 (2006). McClorey, G. et al., "Induced dystrophin exon skipping in human muscle explants," Neuromuscular Disorders, vol. 16:583-590 (2006). McClorey, Graham et al., "Splicing intervention for Duchenne muscular dystrophy," Current Opinion in Pharmacology, vol. 5:529-534 (2005). Mendell, Jerry R. et al., "Eteplirsen for the Treatment of Duchenne Muscular Dystrophy," Ann. Neurol., vol. 74:637-647 (2013) (Exhibit No. 2058 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Mendell, Jerry R. et al., "Eteplirsen in Duchenne Muscular Dystrophy (DMD): 144 Week Update on Six-Minute Walk Test (6MWT) and Safety," slideshow, presented at the 19th International Congress of the World Muscle Society, 17 pages (2014) (Exhibit No. 2059 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Mendell, Jerry R. et al., "Gene therapy for muscular dystrophy: Lessons learned and path forward," Neuroscience Letters, vol. 527:90-99 (2012). Mfold illustrations for Exon 51 and Exon 53 with varying amounts of intron sequence, (University of Western Australia Exhibit 2132, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-2). Mitrpant, Chalermchai et al., "Rational Design of Antisense Oligomers to Induce Dystrophin Exon Skipping," Molecular Therapy, vol. 17(8):1418-1426 (2009). Monaco, Anthony P. et al., "An Explanation for the Phenotypic Differences between Patients Bearing Partial Deletions of the DMD Locus," Genomics, vol. 2:90-95 (1988). Morcos, Paul A., "Gene switching: analyzing a broad range of mutations using steric block antisense oligonucleotides," Methods in Enzymology, vol. 313:174-189 (1999). Moulton, H.M., "Compound and Method for Treating Myotonic Dystrophy," U.S. Appl. No. 12/493,140, 82 pages, filed Jun. 26, 2009 Moulton, Hong M. et al., "Morpholinos and their peptide conjugates: Therapeutic promise and challenge for Duchenne muscular dystrophy," Biochimica et Biophysica Acta, vol. 1798:2296-2303 (2010) Muntoni, Francesco et al., "128th ENMC International Workshop on 'Preclinical optimization and Phase I/II Clinical Trials Using Antisense Oligonucleotides in Duchenne Muscular Dystrophy' Oct. 22-24, 2004, Naarden, The Netherlands," Neuromuscular Disorders, vol. 15:450-457 (2005) (Exhibit No. 2025 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Muntoni, Francesco et al., "149th ENMC International Workshop and 1st TREAT-NMD Workshop on: 'Planning Phase I/II Clinical trials using Systemically Delivered Antisense Oligonucleotides in Duchenne Muscular Dystrophy," Neuromuscular Disorders, vol. 18:268-275 (2008). Nelson, David L. et al., "Nucleotides and Nucleic Acids," Lehninger Principles of Biochemistry, 3rd Edition, Chapter 10, pp. 325-328 and glossary p. G-11, Worth Publishers, New York (2000). Oberbauer, "Renal uptake of an 18-mer phosphorothioate oligo-nucleotide," Kidney Int'l, vol. 48, pp. 1226-1232 (1995), Exhibit No. 1191 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015 Oligonucleotide Cleavage and Deprotection Laboratory Notebook Entry, pp. 1, Exhibit No. 1138 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Oligonucleotide diagrams, 5 pages (Exhibit No. 1053 filed in interferences 106008, 106007 on Nov. 18, 2014). Partial European Search Report for Application No. 10004274.6, 6 pages, dated Oct. 2, 2012. Partial
European Search Report for Application No. 12162995.0, 6 pages, dated Oct. 2, 2012. #### OTHER PUBLICATIONS Patentee's Response to European Patent Application No. 05076770. 6, dated Jul. 28, 2006, 4 pages. Patrick O. Brown and Tidear D. Shalon v. Stephen P.A. Fodor, Dennis W. Solas and William J. Dower: Interference Merits Panel, Interference No. 104,358, 24 pages, dated Aug. 9, 1999 (Exhibit No. 2113 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). PCT Application as-filed for application No. PCT/NL03/00214, 71 pages, dated Sep. 21, 2005 (Exhibit No. 2042 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). PD-10 Desalting Columns, pp. 12, Exhibit No. 1141 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Popplewell, Linda et al., "Design of phosphorodiamidate morpholino oligmers (PMOs) for the induction of exon skipping of the human DMD gene," Human Gene Therapy 19(10): ESGCT 2008 Poster Presentations, p. 1174, Poster No. P203. Popplewell, Linda J. et al., "Comparative analysis of antisense oligonucleotide sequences targeting exon 53 of the human DMD gene: Implications for future clinical trials," Neuromuscular Disorders, vol. 20(2):102-110 (2010) 9 pages (Exhibit No. 2031 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Popplewell, Linda J. et al., "Design of Antisense Oligonucleotides for Exon Skipping of the Human Dystrophin Gene," Human Gene Therapy 19(4): BSGT 2008 Poster Presentation, p. 407, Poster No. P.35 Popplewell, Linda J. et al., "Design of Phosphorodiamidate Morpholino Oligomers (PMOs) for the Induction of Exon Skipping of the Human DMD Gene," Molecular Therapy, vol. 17(3):554-561 (2009). Popplewell, Linda J. et al., "Targeted Skipping of Exon 53 of the Human DMD Gene Recommendation of the Highly Efficient Antisense Oligonucleotide for Clinical Trial," Human Gene Therapy 20(4): BSGT 2009 Poster Presentations, p. 399, Poster No. P10. Poster Abstract Listing for the Tenth Annual Meeting of the RNA Society, held at the Banff Centre for Conferences, in Banff, Alberta, Canada, from May 24-29, 2005, (University of Western Australia Exhibit 2137, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-11). Pramono, "Induction of Exon Skipping of the Dystrophin Transcript in Lymphoblastoid Cells by Transfecting an Antisense Oligodeoxynucleotide Complementary to an Exon Recognition Sequence," Biochem. and Biophy. Res. Comm., vol. 226, pp. 445-449 (1996), Exhibit No. 1192 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Preliminary Amendment for U.S. Appl. No. 12/976,381, 4 pages, dated Dec. 22, 2010 (Exhibit No. 2066 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Preliminary Amendment for U.S. Appl. No. 12/198,007, 3 pages, dated Nov. 7, 2008 (Exhibit No. 2067 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Program Schedule for the Tenth Annual Meeting of the RNA Society, held at the Banff Centre for Conferences, in Banff, Alberta, Canada, from May 24-29, 2005, (University of Western Australia Exhibit 2136, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-4). Proliferation and Differentiation of Myoblast Cultures, pp. 2, Exhibit No. 1169 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Prosensa Press Release, dated Oct. 10, 2014 (2 pages), Exhibit No. 1203 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Prosensa, "GSK and Prosensa Announce Primary Endpoint Not Met in Phase III Study of Drisapersen in Patients With Duchenne Muscular Dystrophy," press release, 4 pages, dated Sep. 20, 2013 (Exhibit No. 2039 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Raz et al. v. Davis et al., Board of Patent Appeals and Inteferences, Patent and Trademark Office, Int. No. 105,712, Tech. Ctr. 1600, Sep. 29, 2011 (24 pages) (2011 WL 4568986 (Bd.Pat.App. & Interf.), Exhibit No. 1209 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Reese, Colin B. et al., "Reaction Between 1-Arenesulphony1-3-Nitro-1,2,4-Triazoles and Nucleoside Base Residues. Elucidation of the Nature of Side-Reactions During Oligonucleotide Synthesis," Tetrahedron Letters, vol. 21:2265-2268 (1980). Reese, Colin B. et al., "The Protection of Thymine and Guanine Residues in Oligodeoxyribonucleotide Synthesis," J. Chem. Soc. Perkin Trans. 1, pp. 1263-1271 (1984). Reexamination Certificate—Application No. 90/011,320, issued Mar. 27, 2012, 2 pages, (Exhibit No. 1072 filed in interferences 106008, 106007 on Dec. 23, 2014). Reply to EPO Communication dated Jun. 26, 2014 in European Application Serial No. 13160338, (University of Western Australia Exhibit 2145, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-4). Reply to EPO Communication dated Oct. 21, 2014 in European Application Serial No. 12198517, (University of Western Australia Exhibit 2148, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-7). Reply to EPO Communication dated Oct. 23, 2014 in European Application Serial No. 12198485, (University of Western Australia Exhibit 2147, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-8). Response to Office Action and Amendments to the Claims for U.S. Appl. No. 13/550,210, 10 pages, dated May 12, 2014 (Exhibit No. 2064 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Rhodes et al., "BioMarin Bulks Up," BioCentury, pp. 6-8 (Dec. 2014), Exhibit No. 1193 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Rna Isolation Using RNA-BEE, pp. 1, Exhibit No. 1175 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Roberts, Roland G. et al., "Exon Structure of the Human Dystrophin Gene," Genomics, vol. 16:536-538 (1993). Roest et al., "Application of In Vitro Myo-Differentiation of Non-Muscle Cells to Enhance Gene Expression and Facilitate Analysis of Muscle Proteins," Neuromuscul. Disord., vol. 6, No. 3, pp. 195-202 (May 1996), Exhibit No. 1124 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Rosso, Mario G. et al., "An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics," Plant Molecular Biology, vol. 53:247-259 (2003). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Annotated Claims, Patent Interference No. 106,013, 14 pages, dated Oct. 27, 2014 (Doc 16). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Claims and Sequence, filed in Patent Interference No. 106,013, 5 pages, dated Oct. 15, 2014 (Doc 12). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Corrected Notice of Related Proceedings, Patent Interference No. 106,007, 3 pages, dated Aug. 1, 2014 (Doc 13). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Exhibit List, 10 pages, Patent Interference No. 106,007 dated Dec. 23, 2014 (Doc 240). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Exhibit List, 10 pages, Patent Interference No. 106,008, dated Dec. 23, 2014 (Doc 244). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL List of Exhibits, 9 pages, Patent Interference No. 106,007, dated Nov. 18, 2014 (Doc 209). University of Western Australia v. Academisch Ziekenhuis Leiden, Azl List of Exhibits, as of Nov. 18, 2014, 9 pages, Patent Interference No. 106,008, dated Nov. 18, 2014 (Doc 212). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL List of Proposed Motions, Patent Interference No. 106,007, 6 pages, dated Sep. 10, 2014 (Doc 16). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL List of Proposed Motions, Patent Interference No. 106,008, 8 pages, dated Sep. 10, 2014 (Doc 15). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Motion 1 (For Judgment that UWA's Claims are Unpatentable #### OTHER PUBLICATIONS Under 35 U.S.C. sections 102 and 103), 69 pages, Patent Interference No. 106,007, dated Nov. 18, 2014 (Doc 181). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Motion 1 (For Judgment that UWA's Claims are Unpatentable Under 35 U.S.C. sections 102 and 103), 69 pages, Patent Interference No. 106,008, dated Nov. 18, 2014 (Doc 181). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Motion 2 (To Deny UWA the Benefit of AU 2004903474), 23 pages, Patent Interference No. 106,007, dated Nov. 18, 2014 (Doc 26). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Motion 2 (To Deny UWA the Benefit of AU 2004903474), 24 pages, Patent Interference No. 106,008, dated Nov. 18, 2014 (Doc 29). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Motion 3 (For Judgment of Unpatentability based on Myriad) 20 pages, Patent Interference No. 106,008, dated Nov. 18, 2014 (Doc 30). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Motion 3 (For Judgment of Unpatentability based on Myriad), 19 pages, Patent Interference No. 106,007, dated Nov. 18, 2014 (Doc 27). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Notice of Related Proceedings, Patent Interference No. 106,007, 3 pages, dated Jul. 31, 2014 (Doc 6). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Notice of Related Proceedings, Patent Interference No. 106,008, 3 pages, dated Aug. 5, 2014 (Doc 7). University of Western Australia v. Academisch Ziekenhuis Leiden, AZL Notice of Related Proceedings, Patent Interference No. 106,013, 3 pages, dated Oct. 15, 2014 (Doc 11). University of Western Australia v. Academisch Ziekenhuis Leiden, Claims and Sequences, 5 pages, dated Aug. 5, 2014, Interference No. 106,008, (Exhibit No. 2047 filed in interferences 106,008, 106,013, 106,007 on Nov. 18, 2014). University of Western Australia v. Academisch Ziekenhuis Leiden, Claims and Sequences, 5 pages, dated Jul. 31, 2014, Interference No. 106,007, (Exhibit No. 2045 filed in interferences 106,008, 106,013, 106,007 on Nov. 18, 2014).
University of Western Australia v. Academisch Ziekenhuis Leiden, Claims and Sequences, 5 pages, dated Oct. 15, 2014., Interference No. 106,013, (Exhibit No. 2050 filed in interferences 106,008, 106,013, 106,007 on Nov. 18, 2014). University of Western Australia v. Academisch Ziekenhuis Leiden Decisions—Motions—37 CFR§ 41.125(a), filed in Patent Interference No. 106,013, Jun. 22, 2015, pp. 1-12 (Doc 192). University of Western Australia v. Academisch Ziekenhuis Leiden, Declaration of Erik Sontheimer dated Nov. 17, 2014, Exhibit 1012 filed in Patent Interference Nos. 106,007 and 106,008, 112 pages, filed Nov. 18, 2014. University of Western Australia v. Academisch Ziekenhuis Leiden, Declaration of Interference, Patent Interference No. 106,007, 7 pages, dated Jul. 18, 2014 (Doc 1). University of Western Australia v. Academisch Ziekenhuis Leiden, Declaration of Interference, Patent Interference No. 106,008, 7 pages, dated Jul. 24, 2014 (Doc 1). University of Western Australia v. Academisch Ziekenhuis Leiden, Declaration of Interference, Patent Interference No. 106,013, 8 pages, dated Sep. 29, 2014 (Doc 1). University of Western Australia v. Academisch Ziekenhuis Leiden, Declaration of Matthew J.A. Wood, Patent Interference Nos. 106,007, 106,008 and 106,013, 184 pages, dated Nov. 18, 2014 (Exhibit No. 2081 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). University of Western Australia v. Academisch Ziekenhuis Leiden, Joint Stipulation regarding Time Periods 2, 3 and 4, 3 pages, Patent Interference No. 106,013, (Doc 135), dated Nov. 25, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Joint Stipulation regarding Time Periods 3-4, 4 pages, Patent Interference No. 106,007, (Doc 243), dated Jan. 29, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Joint Stipulation regarding Time Periods 3-4, 4 pages, Patent Interference No. 106,008, (Doc 247), dated Jan. 29, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Joint Stipulation regarding Time Periods 3-4, 4 pages, Patent Interference No. 106,013, (Doc 137), dated Jan. 29, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Joint Stipulation Regarding Time Periods 4-6, 4 pages, Patent Interference No. 106,007, dated Mar. 19, 2015 (Doc 416). University of Western Australia v. Academisch Ziekenhuis Leiden, Joint Stipulation Regarding Time Periods 4-6, 4 pages, Patent Interference No. 106013, (Doc 151), dated Mar. 19, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Joint Stipulation Regarding Time Periods 4-6, 4 pages, Patent Interference No. 106,008, (Doc 424), dated Mar. 19, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Miscellaneous Order under 37 CFR 41.104(a), 4 pages, Patent Interference Nos. 106,007 and 106,008, dated Dec. 15, 2014. University of Western Australia v. Academisch Ziekenhuis Leiden, Order—Authorizing Motions, Patent Interference No. 106,007, 3 pages, dated Sep. 26, 2014 (Doc 20). University of Western Australia v. Academisch Ziekenhuis Leiden, Order—Authorizing Motions, Patent Interference No. 106,007, 6 pages, dated Sep. 23, 2014 (Doc 19). University of Western Australia v. Academisch Ziekenhuis Leiden, Order—Authorizing Motions, Patent Interference No. 106,008, 6 pages, dated Sep. 23, 2014 (Doc 18). University of Western Australia v. Academisch Ziekenhuis Leiden, Order—Miscellaneous 37 C.F.R. 41.104(a), 2 pages, Patent Interference Nos. 106,007, 106,008, 106,013, dated Nov. 14, 2014. University of Western Australia v. Academisch Ziekenhuis Leiden, Order to Show Cause—37 CFR§ 41.104(a), filed in Patent Interference No. 106,013, Jun. 22, 2015, pp. 1-3 (Doc 193). University of Western Australia v. Academisch Ziekenhuis Leiden, Redeclaration, Patent Interference No. 106,008, 2 pages, dated Sep. 23, 2014 (Doc 19). University of Western Australia v. Academisch Ziekenhuis Leiden, Second Declaration of Matthew J. A. Wood, M.D., D. Phil., Patent Interference Nos. 106,007 and 106,008, 78 pages, dated Feb. 17, 2015 (Exhibit No. 2116 filed in interferences 106,007 and 106,008, on Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, Statement Concerning Initial Settlement Discussions, 3 pages, Patent Interference No. 106,013, (Doc 136), dated Dec. 30, 2014. University of Western Australia v. Academisch Ziekenhuis Leiden, Statement Concerning Subsequent Settlement Discussions, 3 pages, Patent Interference No. 106,007, (Doc 242), dated Dec. 30, 2014. University of Western Australia v. Academisch Ziekenhuis Leiden, Statement Concerning Subsequent Settlement Discussions, 3 pages, Patent Interference No. 106,008, (Doc 246), dated Dec. 30, 2014. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Response to Order to Show Cause, filed in Patent Interference No. 106,013, Jul. 20, 2015, pp. 1-28 (Doc 194). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Exhibit List as of Apr. 10, 2015, filed in Patent Interference No. 106,007, Apr. 10, 2015, pp. 1-10 (Doc 456). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Exhibit List as of Apr. 10, 2015, filed in Patent Interference No. 106,008, Apr. 10, 2015, pp. 1-10 (Doc 464). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Exhibit List as of Apr. 3, 2015, filed in Interference 106007, Apr. 3, 2015, pp. 1-10 (Doc 431). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Exhibit List as of Apr. 3, 2015, filed in Interference 106008, Apr. 3, 2015, pp. 1-10 (Doc 439). #### OTHER PUBLICATIONS "Efficacy Study of AVI-4658 to Induce Dystrophin Expression in Selected Duchenne Muscular Dystrophy Patients" ClinicalTrials. gov dated Jan. 22, 2013. "Eteplirsen—Inhibitor of Dystrophin Expression—Treatment of Duchenne Muscular Dystrophy", Drugs of the Future, vol. 38(1):13-17 (2013). 2nd Expert Declaration of Dr. Erik Sontheimer ("2nd S Decl.") (Exhibit No. 1067 filed in interferences 106008, 106007 on Dec. 23, 2014). 3rd Declaration of Erik J. Sontheimer, Ph.D. ("3rd S. Decl."), pp. 123, Exhibit No. 1186 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. A Comparative Study on AONs between 20 and 50 Nucleotides Designed to Induce the Skipping of Exon 53 from the Dystrophin Pre-mRNA, pp. 6, Exhibit No. 1128 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. A Comparative Study on AONs Between 20 and 50 Nucleotides Designed to Induce the Skipping of Exon 51 from the Dystrophin Pre-mRNA, pp. 6, Exhibit No. 1127 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Aartsma-Rus et al., "Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy," BMC Medical Genetics 8:43 (2007), (University of Western Australia Exhibit 2135, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-9.). Aartsma-Rus, Annemieke et al., "194th ENMC international workshop. 3rd ENMC workshop on exon skipping: Towards clinical application of antisense-mediated exon skipping for Duchenne muscular dystrophy Dec. 8-10, 2012, Naarden, the Netherlands," Neuromuscular Disorders, vol. 23:934-944 (2013). Aartsma-Rus, Annemieke et al., "Antisense-Induced Multiexon Skipping for Duchenne Muscular Dystrophy Makes More Sense," Am. J. Hum. Genet., vol. 74:83-92 (2004). Aartsma-Rus, Annemieke et al., "Functional Analysis of 114 Exon-Internal AONs for Targeted DMD Exon Skipping: Indication for Steric Hindrance of SR Protein Binding Sites," Oligonucleotides, vol. 15:284-297 (2005) (Exhibit No. 2016 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Aartsma-Rus, Annemieke et al., "Guidelines for Antisense Oligonucleotide Design and Insight Into Splice-modulating Mechanisms," Molecular Therapy, vol. 17(3):548-553 (2009) (Exhibit No. 2014 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Aartsma-Rus, Annemieke et al., "Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy," Neuromuscular Disorders, vol. 12:S71-S77 (2002). Aartsma-Rus, Annemieke et al., "Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients," Human Molecular Genetics, vol. 12(8):907-914 (2003). Abbs, Stephen et al., "A convenient multiplex PCR system for the detection of dystrophin gene deletions: a comparative analysis with cDNA hybridisation shows mistypings by both methods," J. Med. Genet., vol. 28:304-311 (1991). Abes, S. et al., "Efficient Splicing Correction by PNA Conjugation to an R6-Penetratin Delivery Peptide", Nucleic Acids Research vol. 35(13):4495-4502 (2007). Agrawal, Sudhir et al., "GEM 91—An Antisense Oligonucleotide Phosphorothioate as a Therapeutic Agent for Aids," Antisense Research and Development, vol. 2:261-266 (1992). Agrawal, Sudhir et al., "Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus," Proc. Natl. Acad. Sci. USA, vol. 85:7079-7083 (1988). Akhtar, Saghir et al., "Cellular uptake and intracellular fate of antisense oligonucleotides," Trends in Cell Biology, vol. 2:139-144 (1992). Akhtar, Saghir, "Delivery Strategies for Antisense Oligonucleotide Therapeutics," CRC Press, Inc., Boca Raton, FL, 160 pages (1995). Alignments of Dystrophin mRNA and Oligonucleotides, 6 pages, submitted to the Patent Trial and Appeal Board in interference No. 106008, dated Nov. 18, 2014 (Exhibit No. 1054 filed in interferences 106008, 106007 on Nov. 18, 2014). Alter, Julia et al., "Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology," Nature Medicine, vol. 12(2):175-177 (2006). Amendment under 37 CFR 1.312 for U.S. Appl. No. 14/248,279, 5 pages, dated Sep. 19, 2014 (Exhibit No. 2053 filed in interferences 106008,
106013, 106007 on Nov. 18, 2014). Analysis of Second PCR Product by Gel Electrophoresis, pp. 1, Exhibit No. 1182 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Anderson, W. French, "Human Gene Therapy," Science, vol. 256:808-813 (1992). Annotated scenario introduced and referred to during Mar. 12, 2015 deposition of Erik J. Sontheimer, Ph.D., (University of Western Australia Exhibit 2139, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, p. 1.). Anthony, Karen et al., "Dystrophin quantification: Biological and Translational Research Implications," Neurology, vol. 83:1-8 (2014) (Exhibit No. 2028 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). AON PS1958 Mass Spectrometry Data, pp. 7, Exhibit No. 1146 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1958 UPLC Data, pp. 2, Exhibit No. 1157 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1959 Mass Spectrometry Data, pp. 5, Exhibit No. 1147 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1959 UPLC Data, pp. 2, Exhibit No. 1158 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1960 Mass Spectrometry Data, pp. 8, Exhibit No. 1148 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1960 UPLC Data, pp. 2, Exhibit No. 1159 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1961 Mass Spectrometry Data, pp. 5, Exhibit No. 1149 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1961 UPLC Data, pp. 2, Exhibit No. 1160 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1962 Mass Spectrometry Data, pp. 7, Exhibit No. 1150 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1962 UPLC Data, pp. 2, Exhibit No. 1161 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1963 Mass Spectrometry Data, pp. 10, Exhibit No. 1151 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1963 UPLC Data, pp. 2, Exhibit No. 1162 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1964 Mass Spectrometry Data, pp. 13, Exhibit No. 1152 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1964 UPLC Data, pp. 2, Exhibit No. 1163 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1965 Mass Spectrometry Data, pp. 9, Exhibit No. 1153 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1965 UPLC Data, pp. 2, Exhibit No. 1164 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1966 Mass Spectrometry Data, pp. 8, Exhibit No. 1154 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1966 UPLC Data, pp. 2, Exhibit No. 1165 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1967 Mass Spectrometry Data, pp. 7, Exhibit No. 1155 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS1967 UPLC Data, pp. 2, Exhibit No. 1166 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS229 (h53AON1) HPLC Chromatograph pp. 2, Exhibit No. 1140 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS229 (h53AON1) HPLC Method Report, pp. 3, Exhibit No. 1139 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS229 (h53AON1) Mass Spectrometry Data, pp. 3, Exhibit No. 1142 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS229 (h53AON1) Synthesis Laboratory Notebook Entry, pp. 1, Exhibit No. 1137 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. #### OTHER PUBLICATIONS University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Notice of Related Proceedings, Patent Interference No. 106,007, 3 pages, dated Aug. 1, 2014 (Doc 11). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Notice of Related Proceedings, Patent Interference No. 106,008, 5 pages, dated Aug. 7, 2014 (Doc 11). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Notice of Related Proceedings, Patent Interference No. 106,013, 3 pages, dated Oct. 14, 2014 (Doc 6). U.S. Pat. No. 7,960,541 (Wilton et al.), pp. 84, Exhibit No. 1002 filed in interferences 106,007 and 106,008 on Nov. 18, 2014. U.S. Pat. No. 8,450,474 (Wilton et al.), pp. 95, Exhibit No. 1087 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,455,634 (Wilton et al.) pp. 96, Exhibit No. 1088 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,455,635 (Wilton et al.), pp. 96, Exhibit No. 1089 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,455,636 (Wilton et al.), pp. 92, Exhibit No. 1003 filed in interferences 106,007 and 106,008 on Nov. 18, 2014. U.S. Pat. No. 8,476,423 (Wilton et al.), pp. 95, Exhibit No. 1111 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,501,703 (Bennett et al.), pp. 16, Exhibit No. 1090 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,501,704 (Mourich et al.), pp. 39, Exhibit No. 1091 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,524,676 (Stein et al.), pp. 28, Exhibit No. 1092 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,524,880 (Wilton et al.), pp. 89, Exhibit No. 1093 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,536,147 (Weller et al.), pp. 95, Exhibit No. 1094 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. U.S. Pat. No. 8,592,386 (Mourich et al.), pp. 46, Exhibit No. 1095 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,618,270 (Iversen et al.), pp. 28, Exhibit No. 1096 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,637,483 (Wilton et al.), pp. 157, Exhibit No. 1097 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,697,858 (Iversen), pp. 95, Exhibit No. 1098 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,703,735 (Iversen et al.) pp. 73, Exhibit No. 1099 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,741,863 (Moulton et al.), pp. 68, Exhibit No. 1100 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,759,307 (Stein et al.), pp. 35, Exhibit No. 1101 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,779,128 (Hanson et al.), pp. 104, Exhibit No. 1102 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,785,407 (Stein et al.), pp. 35, Exhibit No. 1103 filed in interferences 106,007 and 106,008 on Feb. 13, 2015 U.S. Pat. No. 8,785,410 (Iversen et al.), pp. 20, Exhibit No. 1104 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,835,402 (Kole et al.), pp. 27, Exhibit No. 1105 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,865,883 (Sazani et al.), pp. 199, Exhibit No. 1106 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,871,918 (Sazani et al.), pp. 195, Exhibit No. 1107 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,877,725 (Iversen et al.), pp. 34, Exhibit No. 1108 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,895,722 (Iversen et al.), pp. 29, Exhibit No. 1109 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. U.S. Pat. No. 8,906,872 (Iversen et al.), pp. 69, Exhibit No. 1110 filed in interferences 106,007 and 106,008 on Feb. 13, 2015. US Abandonment for U.S. Appl. No. 13/902,376, 1 page, dated Jun. 12, 2014 (Exhibit No. 1047 filed in interferences 106008, 106007 on US Amendment After Non-Final Action for U.S. Appl. No. 11/233,495, 31 pages, dated Jun. 24, 2010 (Exhibit No. 2073 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Nov. 18, 2014). US Amendment for U.S. Appl. No. 11/233,495, 15 pages, dated Apr. 1, 2009 (Exhibit No. 2071 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Amendment for U.S. Appl. No. 11/233,495, 19 pages, dated Sep. 16, 2009 (Exhibit No. 2072 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Amendment for U.S. Appl. No. 11/233,495, 9 pages, dated Oct. 31, 2007 (Exhibit No. 2070 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Amendment for U.S. Appl. No. 11/570,691, 9 pages, dated Jun. 15, 2010 (Exhibit No. 1043 filed in interferences 106008, 106007 on Nov. 18, 2014). US Amendment for U.S. Appl. No. 13/271,080, 30 pages, dated Jan. 30, 2013 (Exhibit No. 1049 filed in interferences 106008, 106007 on Nov. 18, 2014). US Amendment for U.S. Appl. No. 13/902,376, 36 pages, dated Mar. 21, 2014 (Exhibit No. 1046 filed in interferences 106008, 106007 on Nov. 18, 2014). US Amendment in Response to Advisory Action for U.S. Appl. No. 11/233,495, 23 pages, dated Mar. 14, 2011 (Exhibit No. 2074 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Amendments to the Claims for U.S. Appl. No. 11/233,495, 4 pages, dated May 8, 2014 (Exhibit No. 2077 filed in interferences nterferences 106008, 106013, 106007 on Nov. 18, 2014). US Amendments to the Claims for U.S. Appl. No. 14/198,992, 3 pages, dated Jul. 16, 2014 (Exhibit No. 2079 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Applicant-Initiated Interview Summary and Notice of Allowance for U.S. Appl. No. 13/550,210, 9 pages dated May 19, 2014 (Exhibit No. 2076 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US application as-filed and Preliminary Amendment for U.S. Appl. No. 13/550,210, 59 pages dated Jul. 16, 2012 (Exhibit No. 2087 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Application as-filed for U.S. Appl. No. 14/198,992, 52 pages, dated Mar. 6, 2014 (Exhibit No. 2086 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Application as-filed, Application Data Sheet, and Preliminary Amendment for U.S. Appl. No. 12/837,359, 101 pages, dated Jul. 15, 2010 (Exhibit No. 2100 filed in interferences 106008, 106013,
106007 on Nov. 18, 2014). US Application for Letters Patent for U.S. Appl. No. 11/233,495 as-filed and preliminary amendment, 77 pages, dated Sep. 21, 2005 (Exhibit No. 2095 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). U.S. Appl. No. 11/233,495, 74 pages; excerpts of prosecution history including: US Supplemental Amendment and Response dated May 8, 2014; Second Supplemental Response dated Jul. 25, 2013; Supplemental Amendment dated Jun. 26, 2013; Amendment after Non-final Action dated Nov. 1, 2010; Amendment under 35 USC 1.114 dated Sep. 16, 2009 (Exhibit No. 2054 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). U.S. Appl. No. 14/198,992, 17 pages; excerpts of prosecution history including: Supplemental Amendment dated Jul. 16, 2014; Response to Non-Final Office Action dated Jul. 14, 2014 (Exhibit No. 2056 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). U.S. Appl. No. 14/248,279, 29 pages; excerpts of prosecution history including: Amendment under 37 CFR 1.312 dated Sep. 19, 2014; Amendment in Response to Final Office Action dated Aug. 7, 2014; Declaration under 37 CFR 1.132 dated May 26, 2014; Declaration under 37 CFR 1.132 dated May 27, 2014; Response dated Jun. 3, 2014 (Exhibit No. 2057 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). U.S. Appl. No. 13/550,210, 27 pages; excerpts of prosecution history including: Response and Amendment dated May 12, 2014; Response to Non-Final Office Action dated Jan. 21, 2014; Second Preliminary Amendment dated Jan. 3, 2013 (Exhibit No. 2055 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Exhibit List as of Apr. 3, 2015, filed in Interference 106013, Apr. 3, 2015, pp. 1-10 (Doc 153). #### OTHER PUBLICATIONS University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Miscellaneous Motion 4 (to exclude evidence), filed in Patent Interference No. 106,007, Apr. 10, 2015, pp. 1-21 (Doc 455). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Miscellaneous Motion 4 (to exclude evidence), filed in Patent Interference No. 106,008, Apr. 10, 2015, pp. 1-21 (Doc 463). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Opposition 1 (Regarding Patentability Under 35 U.S.C. § 102/103), 38 pages, Patent Interference No. 106,007, (Doc 393), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Opposition 1 (Regarding Patentability Under 35 U.S.C. § 102/103), 39 pages, Patent Interference No. 106,008, (Doc 402), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Opposition 2 (To Retain UWA's Benefit of AU 2004903474), 31 pages, Patent Interference No. 106,008, (Doc 403), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Opposition 2 (To Retain UWA's Benefit of AU 2004903474), 37 pages, Patent Interference No. 106,007, (Doc 394), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Opposition 3 (Regarding Patentability Under 35 U.S.C. § 101), 22 pages, Patent Interference No. 106,007, (Doc 395), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Opposition 3 (Regarding Patentability Under 35 U.S.C. § 101), 22 pages, Patent Interference No. 106,008, (Doc 404), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Opposition 4 (To deny entry of AZL's Proposed New Claims 104 and 105), 36 pages, Patent Interference No. 106,007, (Doc 397), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Opposition 4(To deny entry of AZL's Proposed New Claims 30 and 31), 36 pages, Patent Interference No. 106,008, (Doc 405), dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Reply 1 (to AZL Opposition 1), filed Apr. 3, 2015 in Interference 106007, pp. 1-28 (Doc 428). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Reply 1 (to AZL Opposition 1), filed Apr. 3, 2015 in Interference 106008, pp. 1-28, (Doc 436). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Reply 1 (to Maintain the Interference) filed Apr. 3, 2015 in Interference 106013, pp. 1-17 (Doc 152). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Reply 2 (to AZL Opposition 2) filed Apr. 3, 2015 in Interference 106007, pp. 1-22 (Doc 429). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Reply 2 (to AZL Opposition 2) filed Apr. 3, 2015 in Interference 106008, pp. 1-22 (Doc 437). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Reply 3 (for Judgment under 35 U.S.C. §135(b)) filed Apr. 3, 2015 in Interference 106008, pp. 1-19 (Doc 438). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Reply 3 (to Institute an Interference) filed Apr. 3, 2015 in Interference 106007, pp. 1-17 (Doc 430). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Reply 4 (To Exclude Evidence), filed in Patent Interference No. 106,007, May 12, 2015, pp. 1-13 (Doc 467). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Reply 4 (To Exclude Evidence), filed in Patent Interference no. 106,008, May 12, 2015, pp. 1-13 (Doc 475). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Request for Oral Argument, filed in Patent Interference No. 106,007, Apr. 10, 2015, pp. 1-4 (Doc 457). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Request for Oral Argument, filed in Patent Interference No. 106,008, Apr. 10, 2015, pp. 1-4 (Doc 465). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Request for Oral Argument, filed in Patent Interference No. 106,013, Apr. 10, 2015, pp. 1-3 (Doc 190). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Revised Designation of Lead and Backup Counsel, 4 pages, Patent Interference No. 106,007, (Doc 415), dated Mar. 10, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Revised Designation of Lead and Backup Counsel, 4 pages, Patent Interference No. 106,013, (Doc 150), dated Mar. 10, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Revised Designation of Lead and Backup Counsel, 5 pages, Patent Interference No. 106,008, (Doc 423), dated Mar. 10, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia, Exhibit List as of Feb. 17, 2015, 8 pages, Patent Interference No. 106,007, (Doc No. 398) dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia, Exhibit List as of Feb. 17, 2015, 8 pages, Patent Interference No. 106,008, (Doc No. 406) dated Feb. 17, 2015. University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Involved Claims and Sequence, Patent Interference No. 106,007, 8 pages, dated Aug. 1, 2014 (Doc 12). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Involved Claims and Sequence, Patent Interference No. 106,013, 7 pages, dated Oct. 14, 2014 (Doc 7). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Involved Claims and Sequences, Patent Interference No. 106,008, 8 pages, dated Aug. 7, 2014 (Doc 12). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Exhibit List as of Nov. 18, 2014, 7 pages, Patent Interference No. 106,008, dated Nov. 18, 2014 (Doc 216). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Exhibit list, 7 pages, Patent Interference No. 106,007, dated Nov. 18, 2014 (Doc 213). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Exhibit list, 7 pages, Patent Interference No. 106,013, dated Nov. 18, 2014 (Doc 134). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Exhibit List, 7 pages, Patent Interference Nos. 106,008, dated Dec. 12, 2014 (Doc 221). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Exhibit List, 8 pages, Patent Interference No. 106,007, dated Dec. 12, 2014 (Doc 217). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA List of Proposed Motions, Patent Interference No. 106,007, 7 pages, dated Sep. 10, 2014 (Doc 17). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA List of Proposed Motions, Patent Interference No. 106,008, 6 pages, dated Sep. 10, 2014 (Doc 16). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Miscellaneous Motion 1 (for authorization to file terminal disclaimer), 5 pages, Patent Interference No. 106,008, dated Oct. 17, 2014 (Doc 22). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Motion 1 (For Judgment Under 35 U.S.C., section 112(a)), 40 pages, Patent Interference No. 106,007, dated Nov. 18, 2014 (Doc 210). #### OTHER PUBLICATIONS University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Motion 1 (For Judgment Under 35 § 112(a)) Patent Interference No. 106,008 (Doc 213), 38 pages, on Nov. 18, 2014. University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Motion 1 (To Maintain
Interference between UWA U.S. Pat. No. 8,486,907 and AZL U.S. Appl. No. 14/198,992), 45 pages, Patent Interference No. 106,013, dated Nov. 18, 2014 (Doc 133). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Motion 2 (For Judgment Under 35 U.S.C. section 112(b)), 32 pages, Patent Interference No. 106,008, dated Nov. 18, 2014 (Doc 214) University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Motion 2 (For Judgement Under 35 U.S.C. section 112(b)), 34 pages, Patent Interference No. 106,007, dated Nov. 18, 2015 (Doc 211). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Motion 3 (For judgment that Claims 11-12, 14-15, and 17-29 of U.S. Appl. No. 13/550,210 are barred under 35 U.S.C. section 135(b)), 25 pages, Patent Interference No. 106,008, dated Nov. 18, 2014 (Doc 215). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Motion 3 Requesting an additional Interference between UWA U.S. Pat. No. 8,455,636 and AZL U.S. Appl. No. 14/248,279, 36 pages, Patent Interference No. 106,007, dated Nov. 18, 2014 (Doc 212). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Notice of Filing Priority Statement, 2 pages, Patent Interference No. 106,007, dated Nov. 18, 2014 (Doc 215). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Notice of Filing Priority Statement, 2 pages, Patent Interference No. 106,008, dated Nov. 18, 2014 (Doc 218). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Notice of Recent Authority, filed in Patent Interference No. 106,007, Jul. 2, 2015, pp. 1-16 (Doc 469). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Notice of Recent Authority, filed in Patent Interference No. 106,008, Jul. 2, 2015, pp. 1-16 (Doc 477). US claim amendments for U.S. Appl. No. 13/550,210, 3 pages, dated May 12, 2014 (Exhibit No. 2078 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Claims for U.S. Appl. No. 12/976,381, 1 page, dated Dec. 22, 2010 (Exhibit No. 2065 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Declaration of Richard K. Bestwick, for U.S. Appl. No. 11/570,691, 5 pages, dated Jun. 15, 2010 (Exhibit No. 1044 filed in interferences 106008, 106007 on Nov. 18, 2014). US E-mail from Patent Trial and Appeal Board to Danny Huntington, 2 pages, dated Oct. 9, 2014 (Exhibit No. 2002 filed in interferences 106008 on Oct. 17, 2014). US Non-Final Office Action for U.S. Appl. No. 11/570,691, 16 pages, dated Mar. 15, 2010 (Exhibit No. 1042 filed in interferences 106008, 106007 on Nov. 18, 2014). US Office Action for U.S. Appl. No. 13/271,080, 25 pages, dated Jul. 30, 2012 (Exhibit No. 1048 filed in interferences 106008, 106007 on Nov. 18, 2014). US Office Action for U.S. Appl. No. 13/550,210, 12 pages, dated Sep. 27, 2013 (Exhibit No. 2080 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Office Action for U.S. Appl. No. 13/902,376, 7 pages, dated Jan. 7, 2014 (Exhibit No. 1045 filed in interferences 106008, 106007 on Nov. 18, 2014). U.S. Appl. No. 12/198,007 as-filed, 64 pages, dated Aug. 25, 2008 (Exhibit No. 2092 filed in interferences 106008, 106013, and 106007 on Nov. 18, 2014). US Preliminary Amendment and application as-filed for U.S. Appl. No. 12/976,381,64 pages, dated Dec. 22, 2010 (Exhibit No. 2089 filed in Interferences 106007, 106008, and 106013 on Nov. 18, 2014). US Preliminary Amendment for U.S. Appl. No. 11/233,495, 10 pages, dated Sep. 21, 2005 (Exhibit No. 2069 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Preliminary Remarks for U.S. Appl. No. 14/198,992, 1 page, dated Mar. 6, 2014 (Exhibit No. 2097 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Proposed Terminal Disclaimer for U.S. Appl. No. 12/860,078, 2 pages, dated Oct. 17, 2014 (Exhibit No. 2001 filed in interference 106008 on Oct. 17, 2014). US Remarks for U.S. Appl. No. 14/248,279, 2 pages, dated Aug. 27, 2014 (Exhibit No. 2110 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Response and amendments for U.S. Appl. No. 13/550,210, 12 pages, dated Jan. 21, 2014 (Exhibit No. 2063 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Revised Figure 4H, U.S. Appl. No. 13/271,080, 1 page (Exhibit No. 1050 filed in interferences 106008, 106007 on Nov. 18, 2014). US Terminal Disclaimer for U.S. Appl. No. 14/198,992, 1 page, dated Jul. 15, 2014 (Exhibit No. 2096 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Terminal Disclaimer for U.S. Appl. No. 14/248,279, 1 page, dated Aug. 7, 2014 (Exhibit No. 2109 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Track One Request, Application as-filed, and Application Data Sheet for U.S. Appl. No. 14/248,279, 68 pages, dated Apr. 8, 2014 (Exhibit No. 2108 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Transmittal, application as-filed, and Preliminary Amendment for U.S. Appl. No. 11/570,691, 102 pages, dated Dec. 15, 2006 (Exhibit No. 2103 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Transmittal, application as-filed, and Preliminary Amendment for U.S. Appl. No. 13/270,992, 101 pages, dated Oct. 11, 2011 (Exhibit No. 2098 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Transmittal, application as-filed, and Preliminary Amendment for U.S. Appl. No. 13/271,080, 115 pages, dated Oct. 11, 2011 (Exhibit No. 2111 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). US Updated Filing Receipt for U.S. Appl. No. 13/550,210, 3 pages, dated Dec. 11, 2012 (Exhibit No. 2044 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). USPTO "2014 Procedure for Subject Matter Eligibility Analysis of Claims Reciting or Involving . . . Natural Products" ("the March Guidance"), 19 pages, (Exhibit No. 2118 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. USPTO Written Description Training Materials, Revised Mar. 25, 2008, Example 12, 6 pages, (Exhibit No. 1068 filed in interferences 106008, 106007 on Dec. 23, 2014). UWA Claims and Sequence, as filed in Interference No. 106,007 on Aug. 1, 2014 (Paper 12), 8 pages, (Exhibit No. 2126 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. UWA Claims and Sequence, as filed in Interference No. 106,007 on Aug. 7, 2014 (Paper 12), 8 pages, (Exhibit No. 2127 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. UWA Motion 1 (For Judgment Under 35 § 112(a)) from Int. No. 106,007 (PN210), 40 pages, Exhibit No. 1005 filed in Interference 106,013 on Feb. 17, 2015. UWA Motion 1 (For Judgment Under 35 § 112(a)) from Int. No. 106,008 (Doc 213), pp. 38, Exhibit No. 1004 Filed in Interference 106,013 on Feb. 17, 2015. UWA submission of teleconference transcript, 28 pages, dated Dec. 12, 2014 (Exhibit No. 2114 filed in interferences 106008 and 106007 on Dec. 12, 2014). Valorization Memorandum published by the Dutch Federation of University Medical Centers in Mar. 2009, (University of Western Australia Exhibit 2140, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-33). Van Deutekom et al., "Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells," Human Molecular Genetics vol. 10, No. 15: 1547-1554 (2001) (Exhibit No. 1084 filed in interferences 106008, 106007 on Dec. 23, 2014). #### OTHER PUBLICATIONS van Deutekom et al., "Local Dystrophin Restoration with Antisense Oligonucleotide PRO051," N. Engl. J. Med., vol. 357, No. 26, pp. 2677-2686 (Dec. 2007), Exhibit No. 1213 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Van Deutekom, Judith C. T. et al., "Advances in Duchenne Muscular Dystrophy Gene Therapy," Nature Reviews Genetics, vol. 4(10):774-783 (2003). Van Ommen 2002 PCT (WO 02/24906 AI), 43 pages, (Exhibit No. 1071 filed in interferences 106008, 106007 on Dec. 23, 2014). Van Vliet, Laura et al., "Assessment of the Feasibility of Exon 45-55 Multiexon Skipping for Duchenne Muscular Dystrophy", BMC Medical Genetics, vol. 9(1):105 (2008). Verma, Sandeep et al., "Modified Oligonucleotides: Synthesis and Strategy for Users," Annu. Rev. Biochem., vol. 67:99-134 (1998) (Exhibit No. 1040 filed in interferences 106008, 106007 on Nov. 18, 2014). Voit, Thomas et al., "Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study," Lancet Neurol., vol. 13:987-996 (2014) (Exhibit No. 2037 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Volloch, Vladimir et al., "Inhibition of Pre-mRNA Splicing by Antisense RNA in Vitro: Effect of RNA Containing Sequences Complementary to Exons," Biochemical and Biophysical Research Communications, vol. 179 (3):1593-1599 (1991). Wahlestedt et al., "Potent and nontoxic antisense oligonucleotides containing locked nucleic acids," PNAS, vol. 97, No. 10, pp. 5633-5638 (May 2000), Exhibit No. 1201 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Wang et al., "In Vitro evaluation of novel antisense oligonucleotides is predictive of in vivo exon skipping activity for Duchenne muscular dystrophy," J. Gene Medicine, vol. 12, pp. 354-364 (Mar. 2010), Exhibit No. 1115 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Wang, Chen-Yen et al., "pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse," Proc. Natl. Acad. Sci. USA, vol. 84:7851-7855 (1987). Watakabe, Akiya et al., "The role of exon sequences in splice site selection." Genes & Development, vol. 7:407-418 (1993). Watanabe et al., "Plasma Protein Binding of an Antisense Oligonucleotide Targeting Human ICAM-1 (ISIS 2302)," Oligonucleotides, vol. 16, pp. 169-180 (2006), Exhibit No. 1197 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Wijnaendts, L.C.D. et al., "Prognostic importance of DNA flow cytometric variables in rhabdomyosarcomas,"
J. Clin. Pathol., vol. 46:948-952 (1993) (Exhibit No. 1041 filed in interferences 106008, 106007 on Nov. 18, 2014). Wilton et al. (2007) "Antisense Oligonucleotide-induced Exon Skipping Across the Human Dystrophin Gene Transcript," Molecular Therapy 15(7):1288-1296, 10 pages, (Exhibit No. 2121 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Wilton, Stephen D. et al., "Antisense oligonucleotides in the treatment of Duchenne muscular dystrophy: where are we now?" Neuromuscular Disorders, vol. 15:399-402 (2005). Wilton, Stephen D. et al., "Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides," Neuromuscular Disorders, vol. 9:330-338 (1999). WO 2002/24906 A1 of AZL, (University of Western Australia Exhibit 2134, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-43.). WO 2004/083432 (the published AZL PCT Application, "Van Ommen"), pp. 71, Exhibit No. 1003 filed in Interference 106,013 on Feb. 17, 2015. AON PS229L (h53AON229L) Certificate of Analysis, pp. 1, Exhibit No. 1129 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. AON PS43 (h51AON1) Certificate of Analysis, pp. 1, Exhibit No. 1134 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS43 (h51AON1) HPLC Chromatogram, pp. 1, Exhibit No. 1131 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. AON PS43 (h51AON1) HPLC Method Report, pp. 4, Exhibit No. 1130 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. AON PS43 (h51AON1) Mass Spectrometry Data, pp. 3, Exhibit No. 1135 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AON PS43 (h51AON1) UPLC-UV Data, pp. 2, Exhibit No. 1136 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. AONs PS1958, PS1959, PS1960,1351961, PS1962, PS1963, PS1964, PS1965, PS1966, and PS1967 HPLC Method Report, pp. 3, Exhibit No. 1143 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Applicant-Initiated Interview Summary dated Apr. 8, 2013 in U.S. Appl. No. 13/094,548, (University of Western Australia Exhibit 2144, filed Apr. 3, 2015 in Interferences 106007, 106008, and 106013, pp. 1-11). Arechavala-Gomeza, V. et al., "Comparative Analysis of Antisense Oligonucleotide Sequences for Targeted Skipping of Exon 51 During Dystrophin Pre-mRNA Splicing in Human Muscle," Human Gene Therapy, vol. 18:798-810 (2007). Arora, Vikram et al., "c-Myc Antisense Limits Rat Liver Regeneration and Indicates Role for c-Myc in Regulating Cytochrome P-450 3A Activity," The Journal of Pharmacology and Experimental Therapeutics, vol. 292(3):921-928 (2000). Asetek Danmark A/S v. CMI USA, Inc., 2014 WL 5990699, N.D. Cal. 2014, 8 pages, (Academisch Ziekenhuis Leiden Exhibit 1237, filed May 5, 2015 in Interference 106007 and 106008). Asvadi, Parisa et al., "Expression and functional analysis of recombinant scFv and diabody fragments with specificity for human RhD," Journal of Molecular Recognition, vol. 15:321-330 (2002). Australian Application No. 2004903474, 36 pages, dated Jul. 22, 2005 (Exhibit No. 1004 filed in interferences 106008, 106007 on Nov. 18, 2014). Avi BioPharma, Inc., "Exon 51 Sequence of Dystrophin," Document D19 as filed in Opposition of European Patent EP1619249, filed Jun. 23, 2009, 7 pages. AZL's U.S. Appl. No. 14/295,311 and claims, as-filed Jun. 3, 2014 ("The '311 Application") (Exhibit No. 1077 filed in interferences 106008, 106007 on Dec. 23, 2014). Beaucage, S.L. et al., "Deoxynucleoside Phosphoramidites—A New Class of Key Intermediates for Deoxypolynucleotide Synthesis," Tetrahedron Letters, vol. 22(20):1859-1862 (1981). Bellare, Priya et al., "A role for ubiquitin in the spliceosome assembly pathway," Nature Structural & Molecular Biology, vol. 15(5):444-451 (2008) (Exhibit No. 1057 filed in interferences 106008, 106007 on Nov. 18, 2014). Bellare, Priya et al., "Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p," RNA, vol. 12:292-302 (2006) (Exhibit No. 1056 filed in interferences 106008,106007 on Nov. 18, 2014). Bennett, C. Frank et al., "RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform," Annu. Rev. Pharmacol. Toxicol., vol. 50:259-293 (2010) (Exhibit No. 1025 filed in interferences 106008, 106007 on Nov. 18, 2014). Berge, Stephen M. et al., "Pharmaceutical Salts," Journal of Pharmaceutical Sciences, vol. 66(1):1-18 (1977). Bestas et al., "Design and Application of Bispecific Splice Switching Oligonucleotides," Nuc. Acid Therap., vol. 24, No. 1, pp. 13-24 (2014), Exhibit No. 1120 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Braasch, Dwaine A. et al., "Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA," Chemistry & Biology, vol. 8:1-7 (2001) (Exhibit No. 2009 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Braasch, Dwaine A. et al., "Novel Antisense and Peptide Nucleic Acid Strategies for Controlling Gene Expression," Biochemistry, vol. 41(14):4503-4510 (2002) (Exhibit No. 2006 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Bremmer-Bout, Mattie et al., "Targeted Exon Skipping in Transgenic hDMD Mice: A Model for Direct Preclinical Screening of Human-Specific Antisense Oligonucleotides," Molecular Therapy, #### OTHER PUBLICATIONS vol. 10(2):232-240 (2004) (Exhibit No. 2024 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Brown, Susan C. et al., "Dystrophic phenotype induced in vitro by antibody blockade of muscle alpha-dystroglycan-laminin interaction," Journal of Cell Science, vol. 112:209-216 (1999). Canonico, A.E. et al., "Expression of a CMV Promoter Drive Human alpha-1 Antitrypsin Gene in Cultured Lung Endothelial Cells and in the Lungs of Rabbits," Clinical Research, vol. 39(2):219A (1991). Cirak, Sebahattin et al., "Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study," Lancet, vol. 378(9791):595-605 (2011). Claim Chart U.S. Appl. No. 11/233,495, pp. 57, Exhibit No. 1216 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Claim Chart U.S. Appl. No. 13/550,210, pp. 45, Exhibit No. 1217 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Claim Chart, U.S. Pat. No. 7,807,816, 14 pages (Exhibit No. 1063 filed in interferences 106008, 106007 on Nov. 18, 2014). Claim Chart, U.S. Pat. No. 7,960,541, 17 pages (Exhibit No. 1064 filed in interferences 106008, 106007 on Nov. 18, 2014). Claim Chart, U.S. Pat. No. 8,455,636, 32 pages (Exhibit No. 1062 filed in interferences 106008, 106007 on Nov. 18, 2014). Claim Comparison Chart—Claims 11 and 29 in U.S. Appl. No. 13/550,210, pp. 1, Exhibit No. 1226 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Claim Comparison Chart U.S. Appl. No. 13/550,210 vs U.S. Appl. No. 11/233,495, pp. 12, Exhibit No. 1218 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Claim Comparison Chart U.S. Appl. No. 13/550,210 vs U.S. Appl. No. 12/198,007, pp. 1, Exhibit No. 1219 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Claims from U.S. Appl. No. 11/233,495, 6 pages, dated Sep. 21, 2005 (Exhibit No. 2068 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Classification Excerpts from USPC System, 21 pages, (Academisch Ziekenhuis Leiden Exhibit 1234, filed May 5, 2015 in Interference 106007 and 106008). Collins, C.A. et al., "Duchenne's muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategies," Int. J. Exp. Pathol., vol. 84(4):165-172 (2003). Confirmation of Dystrophin Exon 48 to 50 Deletion in Cell Line 8036 Laboratory Notebook Entry, pp. 3, Exhibit No. 1167 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Confirmation of Dystrophin Exon 52 Deletion in Cell Line R1809 Laboratory; Notebook Entry, pp. 3, Exhibit No. 1168 filed in Interferences 106,007 and 106,008 on Feb. 16, 2015. Coolidge v. Efendic, 2008 WL 2080735, Int. No. 105,457 (BPAI May 16, 2008), 42 pages, (Academisch Ziekenhuis Leiden Exhibit 1235, filed May 5, 2015 in Interference 106007 and 106008). Corey, David R. et al., Morpholino antisense oligonucleotides: tools for investigating vertebrate development, Genome Biology, vol. 2(5):1015.1-1015.3 (2001) (Exhibit No. 1026 filed in interferences 106008, 106007 on Nov. 18, 2014). Corrected Priority Statement filed by UWA in Int. No. 106,008 (as PN 219),pp. 5, Exhibit No. 1002 filed in Interference 106,013 on Feb. 17, 2015. Cortes, Jesus J., et al., "Mutations in the conserved loop of human U5 snRNA generate use of novel cryptic 5' splice sites in vivo," EMBO J., vol. 12, No. 13, pp. 5181-5189 (1993), Exhibit No. 1187 filed in Interferences 106,007 and 106,008 on Feb. 17, 2015. Crooke, Stanley T., Antisense Drug Technology, Principles, Strategies, and Applications, Marcel Dekker, Inc., New York, Chapters 15 and 16, pp. 375-389, 391-469 (2001) (Exhibit No. 2075 filed in interferences 106008, 106013, 106007 on Nov. 18, 2014). Curriculum Vitae of Judith van Deutekom, pp. 6, Exhibit No. 1126 filed in interferences 106,007 and 106,008 on Feb. 17, 2015. Curriculum Vitae, Erik Joseph Sontheimer, 18 pages, dated Sep. 29, 2014 (Exhibit No. 1013 filed in interferences 106008, 106007 on Nov. 18, 2014). CV, Professor Matthew J.A. Wood, 3 pages (Exhibit No. 2003 filed in interferences 106008, 106007 on Nov. 18, 2014). Davis, Richard J. et al., "Fusion of PAX7 to FKHR by the Variant t(1;13)(p36;q14) Translocation in Alveolar Rhabdomyosarcoma," Cancer Research, vol. 54:2869-2872 (1994) (Exhibit No. 1027 filed in interferences 106008, 106007 on Nov. 18, 2014). De Angelis, Fernanda Gabriella et al., "Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophic pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in 48-50 DMD cells," PNAS, vol.
99(14):9456-9461 (2002). "Efficacy Study of AVI-4658 to Induce Dystrophin Expression in Selected Duchenne Muscular Dystrophy Patients," Clinical Trial Identifier No. NCT01396239, ClinicalTrials.gov, dated Jul. 15, 2011, p. 1-4. Aartsma-Rus A, et al. "Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations," Hum Mutat 2009;30:293-99. Ahmad A, et al., "Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy," Hum Mol Genet 2000;9:2507-2515. Arechavala-Gomeza V, et al., "Immunohistological intensity measurements as a tool to assess sarcolemma-associated protein expression," Neuropathol Appl Neurobiol 2010;36: 265-74. AZL's PCT/NL03100214 (the as-filed AZL PCT Application) Exhibit No. 1006, filed in Interference No. 106,007, 64 pages, Dec. 23, 2014. Azofeifa J, et al., "X-chromosome methylation in manifesting and healthy carriers of dystrophinopathies: concordance of activation ratios among first degree female relatives and skewed inactivation as cause of the affected phenotypes," Hum Genet 1995;96:167-176. Brooke MH, et al., "Clinical investigation in Duchenne dystrophy: 2. Determination of the "power" of therapeutic trials based on the natural history," Muscle Nerve. 1983;6:91-103. Bushby K, et al. "Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management," Lancet Neurol 2010;9:77-93. Bushby KM, et al., "The clinical, genetic and dystrophin characteristics of Becker muscular dystrophy," II. Correlation of phenotype with genetic and protein abnormalities. J Neurol 1993;240: 105-112 Bushby KM, et al., "The clinical, genetic and dystrophin characteristics of Becker muscular dystrophy," I. Natural history. J Neurol 1993;240:98-104. Confirmatory Study of Eteplirsen in DMD Patients, An Open-Label, Multi-Center, 48-Week Study With a Concurrent Untreated Control Arm to Evaluate the Efficacy and Safety of Eteplirsen in Duchenne Muscular Dystrophy ,ClinicalTrials.gov, Clinical Trial Identifier NCT02255552, Oct. 1, 2014, 3 pages. Confirmatory Study of Eteplirsen in DMD Patients, An Open-Label, Multi-Center, 48-Week Study With a Concurrent Untreated Control Arm to Evaluate the Efficacy and Safety of Eteplirsen in Duchenne Muscular Dystrophy, ClinicalTrials.gov, Clinical Trial Identifier NCT02255552, May 26, 2015, 3 pages. Emery, A.E. H., "Population frequencies of inherited neuromuscular diseases—a world survey," Neuromuscul Disord 1991;1:19-29. File Excerpts from Prosecution History of U.S. Appl. No. 13/270,992 (UWA's U.S. Pat. No. 8,486,907), pp. 122, Exhibit No. 1006 filed in Interference 106,013 on Feb. 17, 2015. Fletcher S., et al, Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol Ther 2007;15:1587-1592. Hoffman EP, et al., "Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy" N Engl J Med 1988;318:1363-68. Hoffman EP et al., "Restoring dystrophin expression in Duchenne muscular dystrophy muscle: Progress in exon skipping and stop codon read through," Am J Path 2011;179:12-22. #### OTHER PUBLICATIONS Kohler M, et al., "Quality of life, physical disability and respiratory impairment in Duchenne muscular dystrophy," Am J Respir Crit Care Med 2005;172:1032-6. Manzur A, et al.,. "Glucocorticoid corticosteroids for Duchenne dystrophy," muscular Cochrane Database Syst 2004;(2):CD003725. Mazzone E, et al. "Functional changes in Duchenne muscular dystrophy: a 12-month longitudinal cohort study," Neurology 2011;77(3)250-6. McDonald CM, et al., "Profiles of Neuromuscular Diseases, Duchenne muscular dystrophy," Am J Phys Med Rehabil McDonald CM, et al., "The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy," Muscle Nerve 2010;41:500-10. McDonald CM, et al., "The 6-minute walk test in Duchenne/Becker muscular dystrophy: longitudinal observations," Muscle Nerve 2010:42: 966-74. Mendell JR et al., "Evidence-based path to newborn screening for Duchenne muscular Dystrophy," Ann Neurol 2012;71:304-13. Mendell JR, et al., "Dystrophin immunity revealed by gene therapy in Duchenne muscular dystrophy," N Engl J Med 2010;363:1429- Mendell JR, et al., "Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy," N Engl J Med . 1989;320:1592**-**97. Merlini L, et al., "Early corticosteroid treatment in 4 Duchenne muscular dystrophy patients: 14-year follow-up," Muscle Nerve 2012;45:796-802 Muntoni F, et al., "Dystrophin and mutations: one gene, several proteins, multiple phenotypes," Lancet Neurol. 2003;2:731-40. Nguyen TM, et. Al, "Use of Epitope libraries to identify exonspecific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy," Am J Hum Genet 1993;52:1057-66. Statement on a Nonproprietary Name Adopted by the USAN Council, ETEPLIRSEN, Chemical Structure, 2010, pp. 1-5. Strober JB, "Therapeutics in Duchenne muscular dystrophy," NeuroRX 2006; 3:225-34. University of Western Australia v. Academisch Ziekenhuis Leiden, Statement Concerning Subsequent Settlement Discussions, filed in Patent Interference No. 106,013, Aug. 24, 2015, pp. 1-3 (Doc 195). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Notice of Recent Authority, filed in Patent Interference No. 106,007, Sep. 2, 2015, pp. 1-18 (Doc 470). University of Western Australia v. Academisch Ziekenhuis Leiden, UWA Notice of Recent Authority, filed in Patent Interference No. 106,008, Sep. 2, 2015, pp. 1-18 (Doc 478). van Putten M, et al., The Effects of Low Levels of Dystrophin on Mouse Muscle Function and Pathology. PLoS ONE 2012;7:e31937, "Efficacy, Safety, and Tolerability Rollover Study of Eteplirsen in Subjects with Duchenne Muscular Dystrophy," Clinical Trial Identifier No. NCT01540409, ClinicalTrials.gov, published online Feb. 23, 2012, p. 1-4. Exon 46 Sequence of Dystrophin, Document D18 as filed in Opposition of European Patent EP1619249, filed Jun. 23, 2009, 1 Telios Pharms., Inc. v. Merck KgaA, No. 96/1307, 1998 WL 35272018 (S.D. Cal. Nov. 18, 1998), 11 pages (Exhibit No. 2153 filed in interference 106013 on Oct. 29, 2015). University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Exhibit List as of Oct. 29, 2015, filed in Patent Interference No. 106,013, Oct. 29, 2015, pp. 1-10 (Doc 199) University of Western Australia v. Academisch Ziekenhuis Leiden, University of Western Australia Request for Rehearing, filed in Patent Interference No. 106,013, Oct. 29, 2015, pp. 1-20 (Doc 198). Vikase Corp. v. Am. Nat'l. Can Co., No. 93/7651, 1996 WL 377054 (N.D. III. Jul. 1, 1996), 3 pages (Exhibit No. 2152 filed in interference 106013 on Oct. 29, 2015). FDA Briefing Document, "Peripheral and Central Nervous System," Drugs Advisory Committee Meeting, NDA 206488 Eteplirsen, Food and Drug Administration, pp. 1-73, Jan. 22, 2016. University of Western Australia v. Academisch Ziekenhuis Leiden, Decision-Rehearing—37 CFR § 41.125(c), filed in Patent Interference No. 106,013, Dec. 29, 2015, pp. 1-12 (Doc 202). Sarepta Therapeutics, Advisory Committee Briefing Materials: Available for Public Release, "Peripheral and Central Nervous System Drugs Advisory Committee," Eteplirsen Briefing Document, NDA 206488, pp. 1-166, dated Jan. 22, 2016. Sarepta Therapeutics, Advisory Committee Briefing Materials: Available for Public Release, "Peripheral and Central Nervous System Drugs Advisory Committee," Eteplirsen Briefing Document Addendum, NDA 206488, pp. 1-9, dated Jan. 22, 2016 "Open-Label, Multiple-Dose, Efficacy, Safety, and; Tolerability Study of Eteplirsen in Subjects With Duchenne; Muscular Dystrophy Who Participated in Study 4658-US-201," ClinicalTrials.gov dated Jul. 31, 2012, 3 pages. "Open-Label, Multiple-Dose, Efficacy, Safety, and; Tolerability Study of Eteplirsen in Subjects With Duchenne; Muscular Dystrophy Who Participated in Study 4658-US-201," ClinicalTrials.gov dated Oct. 17, 2013, 3 pages. "Open-Label, Multiple-Dose, Efficacy, Safety, and; Tolerability Study of Eteplirsen in Subjects With Duchenne; Muscular Dystrophy Who Participated in Study 4658-US-201," ClinicalTrials.gov dated Feb. 27, 2012, 3 pages. Errata to the Sarepta Briefing Information for the Apr. 25, 2016 Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee, Eteplirsen Errata Document, NDA 206488, 5 pages FDA Briefing Information for the Apr. 25, 2016 Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee, Eteplirsen, NDA 206488, 115 pages. Sarepta Briefing Information for the Apr. 25, 2016 Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee, Eteplirsen Briefing Document, NDA 206488, 186 pages. Sarepta Press Release, Sarepta Issues Statement on Advisory Committee Outcome for Use of Eteplirsen in the Treatment of Duchenne Muscular Dystrophy, Apr. 25, 2016, 2 pages. University of Western Australia v. Academisch Ziekenhuis Leiden, Judgment—Motions—37 CFR § 41.127, filed in Patent Interference No. 106007, Apr. 29, 2016, pp. 1-3. University of Western Australia v. Academisch Ziekenhuis Leiden, Redeclaration—37 CFR 41.203(c), filed in Patent Interference No. 106007, Apr. 29, 2016, pp. 1-2. University of Western Australia v. Academisch Ziekenhuis Leiden, Decision—Motions—37 CFR § 41.125(a), filed in Patent Interference No. 106007, Apr. 29, 2016, pp. 1-53. Letter to the U.S. Food and Drug Administration, (Dr. Janet Woodcock, M.D. Director, CDER), from The Congress of The United States regarding Duchenne muscular dystrophy, dated Feb. 17, 2016, 7 pages Letter to the U.S. Food and Drug Administration, (Dr. Billy Dunn, M.D. Director Division of Neurology Products, Office of Drug Evaluation 1, Center for Drug Evaluation and Research), for The Peripheral and Central Nervous System Advisory Committee Meeting (AdComm)
supporting approval of eteplirsen, dated Feb. 24, 2016, 4 pages. Jett Foundation Presentation by McSherry, C. "Patient and Caregiver-Reported Outcomes of Patients in Clinical Trials of Eteplirsen for Treatment of Duchenne" at Peripheral and Central Nervous System Drugs Advisory Committee, Apr. 25, 2016, 17 pages. Sarepta Presentation at Peripheral and Central Nervous System Drugs Advisory Committee, Apr. 25, 2016, 133 pages. U.S. Food and Drug Administration Presentation at Peripheral and Central Nervous System Drugs Advisory Committee, Apr. 25, 2016, 178 pages. University of Western Australia v. Academisch Ziekenhuis Leiden, Decision-Motions-37 CFR § 41.125(a) (Substitute), filed in Patent Interference No. 106007, May 12, 2016, pp. 1-53. University of Western Australia v. Academisch Ziekenhuis Leiden, Withdrawal and Reissue of Decision on Motions, filed in Patent Interference No. 106007, May 12, 2016, pp. 1-2 Extended European Search Report, EP 15190341.6, dated Apr. 28, 2016, 9 pages. uoaugcacugagugaccucuuucucgcagGCGCUAGCUGGAGCA/////CCGUGCAGACUGACGgucucau ESE **SEQ ID NO:214** FIGURE 2 FIGURE 3 H7A(+45+67) H7A(+2+26) M 600 300 100 50 20 600NM 600 300 100 50 20 600N M FIGURE 4 FIGURE 5 6A(+69+91) FIGURE 6 H4A(+13+32) 600 300 100 50 20 UT Neg Μ FIGURE 7 Mn002 Mn001 Mn02 MndS Mug JSR604 -Neg. cont. dq001 Sep. 20, 2016 dd00t Mn002 Mn001 Mn02 MndS Mug FIGURE 8A | 19/20/20 cocktail
HM19A(+35+36)
H20A(+44+71)
H20A(+149+170) | - | |---|-----------| | Weasel19/20
H19A(+35+53)-
aa-
H20A(+149+168) | FIGURE 11 | | Weasel19/20
H19A(+35+53)-
aa-
H20A(+44+63) | L | | Weasel19/20/20
H19A(+35+53)-aa-
H20A(+44+63)-aa-
H20A(+149+168) | | H36A(+26+50) H32A(+49+73) Sep. 20, 2016 FIGURE 20 # H46A(+86+115) FIGURE 21 ## ANTISENSE OLIGONUCLEOTIDES FOR INDUCING EXON SKIPPING AND METHODS OF USE THEREOF #### CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. patent application Ser. No. 13/826,880, filed Mar. 14, 2013, now allowed, which application is a continuation of U.S. patent application Ser. No. 13/741,150, filed Jan. 14, 2013, abandoned, which is a continuation of U.S. patent application Ser. No. 13/168,857, filed Jun. 24, 2011, abandoned, which application is a continuation of U.S. patent application Ser. No. 12/837,359, filed Jul. 15, 2010, now issued as U.S. Pat. No. 8,232,384, which application is a continuation of U.S. patent application Ser. No. 11/570,691, filed Jan. 15, 2008, now issued as U.S. Pat. No. 7,807,816, which application is a 35 U.S.C. §371 National Phase application of PCT/AU2005/ 000943, filed Jun. 28, 2005, which claims priority to Aus- 20 tralian Patent Application No. 2004903474, filed Jun. 28, 2004; which applications are each incorporated herein by reference in their entireties. #### STATEMENT REGARDING SEQUENCE LISTING The Sequence Listing associated with the application is provided in text format in liew of a paper copy, and is hereby incorporated by reference into the specification. The name of 30 the text file containing the Sequence Listing is Sequence-Listing.txt. The text file is 61 Kilobytes, was created on Sep. 16, 2015 and is being submitted electronically via EFS-Web. #### FIELD OF THE INVENTION The present invention relates to novel antisense compounds and compositions suitable for facilitating exon skipping. It also provides methods for inducing exon skipping compositions adapted for use in the methods of the invention. #### **BACKGROUND ART** Significant effort is currently being expended researching methods for suppressing or compensating for disease-causing mutations in genes. Antisense technologies are being developed using a range of chemistries to affect gene expression at a variety of different levels (transcription, splicing, 50 stability, translation). Much of that research has focused on the use of antisense compounds to correct or compensate for abnormal or disease-associated genes in a myriad of different conditions. Antisense molecules are able to inhibit gene expression 55 with exquisite specificity and because of this many research efforts concerning oligonucleotides as modulators of gene expression have focused on inhibiting the expression of targeted genes such as oncogenes or viral genes. The antisense oligonucleotides are directed either against RNA 60 (sense strand) or against DNA where they form triplex structures inhibiting transcription by RNA polymerase II. To achieve a desired effect in specific gene down-regulation, the oligonucleotides must either promote the decay of the targeted mRNA or block translation of that mRNA, thereby 65 effectively preventing de novo synthesis of the undesirable target protein. 2 Such techniques are not useful where the object is to up-regulate production of the native protein or compensate for mutations which induce premature termination of translation such as nonsense or frame-shifting mutations. Furthermore, in cases where a normally functional protein is prematurely terminated because of mutations therein, a means for restoring some functional protein production through antisense technology has been shown to be possible through intervention during the splicing processes (Sierakowska H, et al., (1996) Proc Natl Acad Sci USA 93, 12840-12844; Wilton SD, et al., (1999) Neuromusc Disorders 9, 330-338; van Deutekom JC et al., (2001) Human Mol Genet 10, 1547-1554). In these cases, the defective gene transcript should not be subjected to targeted degradation so the antisense oligonucleotide chemistry should not promote target mRNA decay. In a variety of genetic diseases, the effects of mutations on the eventual expression of a gene can be modulated through a process of targeted exon skipping during the splicing process. The splicing process is directed by complex multiparticle machinery that brings adjacent exon-intron junctions in pre-mRNA into close proximity and performs cleavage of phosphodiester bonds at the ends of the introns with their subsequent reformation between exons that are to be 25 spliced together. This complex and highly precise process is mediated by sequence motifs in the pre-mRNA that are relatively short semi-conserved RNA segments to which bind the various nuclear splicing factors that are then involved in the splicing reactions. By changing the way the splicing machinery reads or recognises the motifs involved in pre-mRNA processing, it is possible to create differentially spliced mRNA molecules. It has now been recognised that the majority of human genes are alternatively spliced during normal gene expression, although the mechanisms 35 invoked have not been identified. Using antisense oligonucleotides, it has been shown that errors and deficiencies in a coded mRNA could be bypassed or removed from the mature gene transcripts. In nature, the extent of genetic deletion or exon skipping using the novel antisense compounds as well as therapeutic 40 in the splicing process is not fully understood, although many instances have been documented to occur, generally at very low levels (Sherrat TG, et al., (1993) Am J Hum Genet 53, 1007-1015). However, it is recognised that if exons associated with disease-causing mutations can be specifi-45 cally deleted from some genes, a shortened protein product can sometimes be produced that has similar biological properties of the native protein or has sufficient biological activity to ameliorate the disease caused by mutations associated with the target exon (Lu QL, et al., (2003) Nature Medicine 9, 1009-1014; Aartsma-Rus A et al., (2004) $Am\ J$ Hum Genet 74: 83-92). > This process of targeted exon skipping is likely to be particularly useful in long genes where there are many exons and introns, where there is redundancy in the genetic constitution of the exons or where a protein is able to function without one or more particular exons (e.g. with the dystrophin gene, which consists of 79 exons; or possibly some collagen genes which encode for repeated blocks of sequence or the huge nebulin or titin genes which are comprised of ~80 and over 370 exons, respectively). > Efforts to redirect gene processing for the treatment of genetic diseases associated with truncations caused by mutations in various genes have focused on the use of antisense oligonucleotides that either: (1) fully or partially overlap with the elements involved in the splicing process; or (2) bind to the pre-mRNA at a position sufficiently close to the element to disrupt the binding and function of the splicing factors that would normally mediate a particular splicing reaction which occurs at that element (e.g., binds to the pre-mRNA at a position within 3, 6, or 9 nucleotides of the element to be blocked). For example, modulation of mutant dystrophin premRNA splicing with antisense oligoribonucleotides has been reported both in vitro and in vivo. In one type of dystrophin mutation reported in Japan, a 52-base pair deletion mutation causes exon 19 to be removed with the flanking introns during the splicing process (Matsuo et al., 10 (1991) *J Clin Invest.*, 87:2127-2131). An in vitro minigene splicing system has been used to show that a 31-mer 2'-O-methyl oligoribonucleotide complementary to the 5' half of the deleted sequence in dystrophin Kobe exon 19 inhibited splicing of wild-type pre-mRNA (Takeshima et al. (1995), *J. Clin. Invest.*, 95, 515-520). The same oligonucleotide was used to induce exon skipping from the native dystrophin gene transcript in human cultured lymphoblastoid cells Dunckley et al., (1997) *Nucleosides & Nucleotides*, 16, 20 1665-1668 described in vitro constructs for analysis of splicing around exon 23 of mutated dystrophin in the mdx mouse mutant, a model for muscular dystrophy. Plans to analyse these constructs in vitro using 2' modified oligonucleotides targeted to splice sites within and adjacent to 25 mouse
dystrophin exon 23 were discussed, though no target sites or sequences were given. 2'-O-methyl oligoribonucleotides were subsequently reported to correct dystrophin deficiency in myoblasts from the mdx mouse from this group. An antisense oligonucleotide targeted to the 3' splice site of murine dystrophin intron 22 was reported to cause skipping of the mutant exon as well as several flanking exons and created a novel in-frame dystrophin transcript with a novel internal deletion. This mutated dystrophin was expressed in 1-2% of antisense 35 treated mdx myotubes. Use of other oligonucleotide modifications such as 2'-O-methoxyethyl phosphodiesters are described (Dunckley et al. (1998) *Human Mol. Genetics*, 5, 1083-90). Thus, antisense molecules may provide a tool in the 40 treatment of genetic disorders such as Duchenne Muscular Dystrophy (DMD). However, attempts to induce exon skipping using antisense molecules have had mixed success. Studies on dystrophin exon 19, where successful skipping of that exon from the dystrophin pre-mRNA was achieved 45 using a variety of antisense molecules directed at the flanking splice sites or motifs within the exon involved in exon definition as described by Errington et al. (2003) *J Gen Med* 5, 518-527". In contrast to the apparent ease of exon 19 skipping, the 50 first report of exon 23 skipping in the mdx mouse by Dunckley et al., (1998) is now considered to be reporting only a naturally occurring revertant transcript or artefact rather than any true antisense activity. In addition to not consistently generating transcripts missing exon 23, Dunckley et al., (1998) did not show any time course of induced exon skipping, or even titration of antisense oligonucleotides, to demonstrate dose dependent effects where the levels of exon skipping corresponded with increasing or decreasing amounts of antisense oligonucleotide. Further-60 more, this work could not be replicated by other researchers. The first example of specific and reproducible exon skipping in the mdx mouse model was reported by Wilton et al., (1999) *Neuromuscular Disorders* 9, 330-338. By directing an antisense molecule to the donor splice site, consistent 65 and efficient exon 23 skipping was induced in the dystrophin mRNA within 6 hours of treatment of the cultured cells. 4 Wilton et al, (1999), also describe targeting the acceptor region of the mouse dystrophin pre-mRNA with longer antisense oligonucleotides and being unable to repeat the published results of Dunckley et al., (1998). No exon skipping, either 23 alone or multiple removal of several flanking exons, could be reproducibly detected using a selection of antisense oligonucleotides directed at the acceptor splice site of intron 22. While the first antisense oligonucleotide directed at the intron 23 donor splice site induced consistent exon skipping in primary cultured myoblasts, this compound was found to be much less efficient in immortalized cell cultures expressing higher levels of dystrophin. However, with refined targeting and antisense oligonucleotide design, the efficiency of specific exon removal was increased by almost an order of magnitude (see Mann CJ et al., (2002) J Gen Med 4, 644-654). Thus, there remains a need to provide antisense oligonucleotides capable of binding to and modifying the splicing of a target nucleotide sequence. Simply directing the antisense oligonucleotides to motifs presumed to be crucial for splicing is no guarantee of the efficacy of that compound in a therapeutic setting. #### SUMMARY OF THE INVENTION The present invention provides antisense molecule compounds and compositions suitable for binding to RNA motifs involved in the splicing of pre-mRNA that are able to induce specific and efficient exon skipping and a method for their use thereof. The choice of target selection plays a crucial role in the efficiency of exon skipping and hence its subsequent application of a potential therapy. Simply designing antisense molecules to target regions of pre-mRNA presumed to be involved in splicing is no guarantee of inducing efficient and specific exon skipping. The most obvious or readily defined targets for splicing intervention are the donor and acceptor splice sites although there are less defined or conserved motifs including exonic splicing enhancers, silencing elements and branch points. The acceptor and donor splice sites have consensus sequences of about 16 and 8 bases respectively (see FIG. 1 for schematic representation of motifs and domains involved in exon recognition, intron removal and the splicing process). According to a first aspect, the invention provides antisense molecules capable of binding to a selected target to induce exon skipping. For example, to induce exon skipping in exons 3 to 8, 10 to 16, 19 to 40, 42 to 44, 46, 47, and 50 to 53 in the Dystrophin gene transcript the antisense molecules are preferably selected from the group listed in Table 1A. In a further example, it is possible to combine two or more antisense oligonucleotides of the present invention together to induce multiple exon skipping in exons 19-20, and 53. This is a similar concept to targeting of a single exon. A combination or "cocktail" of antisense oligonucleotides are directed at adjacent exons to induce efficient exon skipping. In another example, to induce exon skipping in exons 19-20, 31, 34 and 53 it is possible to improve exon skipping of a single exon by joining together two or more antisense oligonucleotide molecules. This concept is termed by the inventor as a "weasel", an example of a cunningly designed antisense oligonucleotide. A similar concept has been described in Aartsma-Rus A et al., (2004) *Am J Hum Genet* 74: 83-92). According to a second aspect, the present invention provides antisense molecules selected and or adapted to aid in the prophylactic or therapeutic treatment of a genetic disorder comprising at least an antisense molecule in a form suitable for delivery to a patient. According to a third aspect, the invention provides a method for treating a patient suffering from a genetic disease wherein there is a mutation in a gene encoding a particular protein and the affect of the mutation can be abrogated by exon skipping, comprising the steps of: (a) selecting an 10 antisense molecule in accordance with the methods described herein; and (b) administering the molecule to a patient in need of such treatment. The invention also addresses the use of purified and isolated antisense oligonucleotides of the invention, for the 15 manufacture of a medicament for treatment of a genetic The invention further provides a method of treating a condition characterised by Duchenne muscular dystrophy, which method comprises administering to a patient in need 20 of treatment an effective amount of an appropriately designed antisense oligonucleotide of the invention, relevant to the particular genetic lesion in that patient. Further, the invention provides a method for prophylactically treating a patient to prevent or at least minimise Duchene muscular 25 dystrophy, comprising the step of: administering to the patient an effective amount of an antisense oligonucleotide or a pharmaceutical composition comprising one or more of these biological molecules. The invention also provides kits for treating a genetic 30 disease, which kits comprise at least a antisense oligonucleotide of the present invention, packaged in a suitable container and instructions for its use. Other aspects and advantages of the invention will the ensuing description, which proceeds with reference to the following figures. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 Schematic representation of motifs and domains involved in exon recognition, intron removal and the splicing process (SEQ ID NOS: 213 and 214). FIG. 2. Diagrammatic representation of the concept of antisense oligonucleotide induced exon skipping to by-pass 45 disease-causing mutations (not drawn to scale). The hatched box represents an exon carrying a mutation that prevents the translation of the rest of the mRNA into a protein. The solid black bar represents an antisense oligonucleotide that prevents inclusion of that exon in the mature mRNA. FIG. 3 Gel electrophoresis showing differing efficiencies of two antisense molecules directed at exon 8 acceptor splice site. The preferred compound [H8A(-06+18)] induces strong and consistent exon skipping at a transfection concentration of 20 nanomolar in cultured normal human 55 muscle cells. The less preferred antisense oligonucleotide [H8A(-06+14)] also induces efficient exon skipping, but at much higher concentrations. Other antisense oligonucleotides directed at exon 8 either only induced lower levels of exon skipping or no detectable skipping at all (not shown). 60 FIG. 4 Gel electrophoresis showing differing efficiencies of two antisense molecules directed at internal domains within exon 7, presumably exon splicing enhancers. The preferred compound [H7A(+45+67)] induces strong and consistent exon skipping at a transfection concentration of 65 20 nanomolar in cultured human muscle cells. The less preferred antisense oligonucleotide [H7A(+2+26)] induces only low levels of exon skipping at the higher transfection concentrations. Other antisense oligonucleotides directed at exon 7 either only induced lower levels of exon skipping or no detectable skipping at all (not shown). FIG. 5 Gel electrophoresis showing an example of low efficiency exon 6 skipping using two non-preferred antisense molecules directed at human exon 6 donor splice site. Levels of induced exon 6 skipping are either very low [H6D(+04-21)] or almost undetectable [H6D(+18-04)]. These are examples of non-preferred antisense oligonucleotides to demonstrate that antisense oligonucleotide design plays a crucial role in the efficacy of these compounds. FIG. 6 Gel electrophoresis showing strong and efficient human exon 6 skipping using an antisense molecules [H6A (+69+91)] directed at an
exon 6 internal domain, presumably an exon splicing enhancer. This preferred compound induces consistent exon skipping at a transfection concentration of 20 nanomolar in cultured human muscle cells. FIG. 7 Gel electrophoresis showing strong human exon 4 skipping using an antisense molecule H4A(+13+32) directed at an exon 6 internal domain, presumably an exon splicing enhancer. This preferred compound induces strong and consistent exon skipping at a transfection concentration of 20 nanomolar in cultured human muscle cells, FIG. 8A Gel electrophoresis showing strong human exon 12 skipping using antisense molecule H12A(+52+75) directed at exon 12 internal domain. FIG. 8B Gel electrophoresis showing strong human exon 11 skipping using antisense molecule H11A(+75+97) directed at an exon 11 internal domain. FIG. 9A Gel electrophoresis showing strong human exon 15 skipping using antisense molecules H15A(+48+71) and H15A(-12+19) directed at an exon 15 internal domain. FIG. 9B Gel electrophoresis showing strong human exon become apparent to those skilled in the art from a review of 35 16 skipping using antisense molecules H16A(-12+19) and H16A(-06+25). > FIG. 10 Gel electrophoresis showing human exon 19/20 skipping using antisense molecules H20A(+44+71) and H20A(+149+170) directed at an exon 20 and a "cocktail" of antisense oligonucleotides H19A(+35+65, H20A(+44+71) and H20A(+149+170) directed at exons 19/20. > FIG. 11 Gel electrophoresis showing human exon 19/20 skipping using "weasels" directed at exons 19 and 20. FIG. 12 Gel electrophoresis showing exon 22 skipping using antisense molecules H22A(+125+106), H22A(+47+ 69), H22A(+80+101) and H22D(+13-11) directed at exon FIG. 13 Gel electrophoresis showing exon 31 skipping using antisense molecules H31D(+01-25) and H31D(+03-22); and a "cocktail" of antisense molecules directed at exon FIG. 14 Gel electrophoresis showing exon 33 skipping using antisense molecules H33A(+30+56) and H33A(+64+ 88) directed at exon 33. FIG. 15 Gel electrophoresis showing exon 35 skipping using antisense molecules H35A(+141+161), H35A(+116+ 135), and H35A(+24+43) and a "cocktail of two antisense molecules, directed at exon 35. FIG. 16 Gel electrophoresis showing exon 36 skipping using antisense molecules H32A(+49+73) and H36A(+26+ 50) directed at exon 36. FIG. 17 Gel electrophoresis showing exon 37 skipping using antisense molecules H37A(+82+105) and H37A(+ 134+157) directed at exon 37. FIG. 18 Gel electrophoresis showing exon 38 skipping using antisense molecule H38A(+88+112) directed at exon 38. FIG. **19** Gel electrophoresis showing exon 40 skipping using antisense molecule H40A(-05+17) directed at exon 40 FIG. **20** Gel electrophoresis showing exon 42 skipping using antisense molecule H42A(-04+23) directed at exon 5 FIG. 21 Gel electrophoresis showing exon 46 skipping using antisense molecule H46A(+86+115) directed a# exon 46. 8 FIG. 22 Gel electrophoresis showing exon 51, exon 52 and exon 53 skipping using various antisense molecules directed at exons 51, 52 and 53, respectively. A "cocktail" of antisense molecules is also shown directed at exon 53. # BRIEF DESCRIPTION OF THE SEQUENCE LISTINGS # TABLE 1A | SEQ II | SEQUENCE | NUC | LEOT: | IDE S | SEQUI | ENCE | (5'- | -3') | | | |--------|--------------|------------|-------|-------|-------|------|------|------|-----|-----| | 1 | H8A(-06+18) | GAU | AGG | UGG | UAU | CAA | CAU | CUG | UAA | | | 2 | H8A (-03+18) | GAU | AGG | UGG | UAU | CAA | CAU | CUG | | | | 3 | H8A(-07+18) | GAU | AGG | UGG | UAU | CAA | CAU | CUG | UAA | G | | 4 | H8A(-06+14) | GGU | GGU | AUC | AAC | AUC | UGU | AA | | | | 5 | H8A(-10+10) | GUA | UCA | ACA | UCU | GUA | AGC | AC | | | | 6 | H7A(+45+67) | UGC | AUG | UUC | CAG | UCG | UUG | UGU | GG | | | 7 | H7A(+02+26) | CAC | UAU | UCC | AGU | CAA | AUA | GGU | CUG | G | | 8 | H7D(+15-10) | AUU | UAC | CAA | CCU | UCA | GGA | UCG | AGU | A | | 9 | H7A(-18+03) | GGC | CUA | AAA | CAC | AUA | CAC | AUA | | | | 10 | C6A(-10+10) | CAU | טטט | UGA | CCU | ACA | UGU | GG | | | | 11 | C6A(-14+06) | טטט | GAC | CUA | CAU | GUG | GAA | AG | | | | 12 | C6A(-14+12) | UAC | AUU | טטט | GAC | CUA | CAU | GUG | GAA | AG | | 13 | C6A(-13+09) | AUU | טטט | GAC | CUA | CAU | GGG | AAA | G | | | 14 | CH6A(+69+91) | UAC | GAG | UUG | AUU | GUC | GGA | CCC | AG | | | 15 | C6D(+12-13) | GUG | GUC | UCC | UUA | CCU | AUG | ACU | GUG | G | | 16 | C6D(+06-11) | GGU | CUC | CUU | ACC | UAU | GΑ | | | | | 17 | H6D(+04-21) | UGU | CUC | AGU | AAU | CUU | CUU | ACC | UAU | | | 18 | H6D(+18-04) | UCU | UAC | CUA | UGA | CUA | UGG | AUG | AGA | | | 19 | H4A(+13+32) | GCA | UGA | ACU | CUU | GUG | GAU | CC | | | | 20 | H4D(+04-16) | CCA | GGG | UAC | UAC | UUA | CAU | UA | | | | 21 | H4D(-24-44) | AUC | GUG | UGU | CAC | AGC | AUC | CAG | | | | 22 | H4A(+11+40) | UGU | UCA | GGG | CAU | GAA | CUC | UUG | UGG | AUC | | 23 | H3A(+30+60) | UAG
ACU | | GCG | CCU | ccc | AUC | CUG | UAG | GUC | | 24 | H3A(+35+65) | AGG
AGG | | AGG | AGG | CGC | CUC | CCA | UCC | UGU | | 25 | H3A(+30+54) | GCG | CCU | CCC | AUC | CUG | UAG | GUC | ACU | G | | 26 | H3D(+46-21) | CUU | CGA | GGA | GGU | CUA | GGA | GGC | GCC | UC | | 27 | H3A(+30+50) | CUC | CCA | UCC | UGU | AGG | UCA | CUG | | | 9 | SEQ | ID SEQUENCE | | LEOT: | IDE S | EQUI | | (5' | -3') | | | | |-----|----------------|------------|-------|-------|------|-----|-----|------|-----|-----|----| | 28 | H3D(+19-03) | UAC | CAG | טטט | UUG | CCC | UGU | CAG | G | | | | 29 | H3A(-06+20) | UCA | AUA | UGC | UGC | UUC | CCA | AAC | UGA | AA | | | 30 | H3A(+37+61) | CUA | GGA | GGC | GCC | UCC | CAU | CCU | GUA | G | | | 31 | H5A(+20+50) | UUA
CUU | | טטט | CCA | UCU | ACG | AUG | UCA | GUA | | | 32 | H5D(+25-05) | CUU
CAA | | UGC | CAG | UGG | AGG | AUU | AUA | UUC | | | 33 | H5D(+10-15) | CAU | CAG | GAU | UCU | UAC | CUG | CCA | GUG | G | | | 34 | H5A(+10+34) | CGA | UGU | CAG | UAC | UUC | CAA | UAU | UCA | С | | | 35 | H5D(-04-21) | ACC | AUU | CAU | CAG | GAU | UCU | | | | | | 36 | H5D(+16-02) | ACC | UGC | CAG | UGG | AGG | AUU | | | | | | 37 | H5A(-07+20) | CCA | AUA | UUC | ACU | AAA | UCA | ACC | UGU | UAA | | | 38 | H5D(+18-12) | CAG
UAU | GAU | UGU | UAC | CUG | CCA | GUG | GAG | GAU | | | 39 | H5A(+05+35) | ACG
AAA | | UCA | GUA | CUU | CCA | AUA | UUC | ACU | | | 40 | H5A(+15+45) | AUU
AAU | | AUC | UAC | GAU | GUC | AGU | ACU | UCC | | | 41 | H10A(-05+16) | CAG | GAG | CUU | CCA | AAU | GCU | GCA | | | | | 42 | H10A(-05+24) | CUU | GUC | UUC | AGG | AGC | UUC | CAA | AUG | CUG | CA | | 43 | H10A(+98+119) | UCC | UCA | GCA | GAA | AGA | AGC | CAC | G | | | | 44 | H10A(+130+149) | UUA | GAA | AUC | UCU | CCU | UGU | GC | | | | | 45 | H10A(-33-14) | UAA | AUU | GGG | UGU | UAC | ACA | AU | | | | | 46 | H11D(+26+49) | CCC | UGA | GGC | AUU | CCC | AUC | UUG | AAU | | | | 47 | H11D(+11-09) | AGG | ACU | UAC | UUG | CUU | UGU | υυ | | | | | 48 | H11A(+118+140) | CUU | GAA | טטט | AGG | AGA | UUC | AUC | UG | | | | 49 | H11A(+75+97) | CAU | CUU | CUG | AUA | AUU | UUC | CUG | UU | | | | 50 | H12A(+52+75) | UCU | UCU | GUU | טטט | GUU | AGC | CAG | UCA | | | | 51 | H12A(-10+10) | UCU | AUG | UAA | ACU | GAA | AAU | UU | | | | | 52 | H12A(+11+30) | UUC | UGG | AGA | UCC | AUU | AAA | AC | | | | | 53 | H13A(+77+100) | CAG | CAG | UUG | CGU | GAU | CUC | CAC | UAG | | | | 54 | H13A(+55+75) | UUC | AUC | AAC | UAC | CAC | CAC | CAU | | | | | 55 | H13D(+06-19) | CUA | AGC | AAA | AUA | AUC | UGA | CCU | UAA | G | | | 56 | H14A(+37+64) | CUU | GUA | AAA | GAA | CCC | AGC | GGU | CUU | CUG | Ū | | 57 | H14A(+14+35) | CAU | CUA | CAG | AUG | טטט | GCC | CAU | С | | | | 58 | H14A(+51+73) | GAA | GGA | UGU | CUU | GUA | AAA | GAA | CC | | | | 59 | H14D(-02+18) | ACC | UGU | UCU | UCA | GUA | AGA | CG | | | | # TABLE 1A-continued 11 | SEQ II | SEQUENCE | NUC | LEOT: | IDE S | EQUI | ENCE | (5' | -3') | | | | |--------|----------------|------------|-------|-------|-------|------|------|------|------|-------|--| | 60 | H14D(+14-10) | CAU | GAC | ACA | CCU | GUU | CUU | CAG | UAA | | | | 61 | H14A(+61+80) | CAU | UUG | AGA | AGG | AUG | UCU | UG | | | | | 62 | H14A(-12+12) | AUC | UCC | CAA | UAC | CUG | GAG | AAG | AGA | | | | 63 | H15A(-12+19) | GCC
CAU | | CAC | UAA | AAA | GGC | ACU | GCA | AGA | | | 64 | H15A(+48+71) | UCU | UUA | AAG | CCA | GUU | GUG | UGA | AUC | | | | 65 | H15A(+08+28) | טטט | CUG | AAA | GCC | AUG | CAC | UAA | | | | | 66 | H15D(+17-08) | GUA | CAU | ACG | GCC | AGU | טטט | UGA | AGA | C | | | 67 | H16A(-12+19) | CUA
ACA | | CCG | CUU | UUA | AAA | CCU | GUU | AAA | | | 68 | H16A(-06+25) | UCU
GUU | | CUA | GAU | CCG | CUU | UUA | AAA | CCU | | | 69 | H16A(-06+19) | CUA | GAU | CCG | CUU | UUA | AAA | CCU | GUU | А | | | 70 | H16A(+87+109) | CCG | UCU | UCU | GGG | UCA | CUG | ACU | UA | | | | 71 | H16A(-07+19) | CUA | GAU | CCG | CUU | UUA | AAA | CCU | GUU | AA | | | 72 | H16A(-07+13) | CCG | CUU | UUA | AAA | CCU | GUU | AA | | | | | 73 | H16A(+12+37) | UGG | AUU | GCU | טטט | UCU | טטט | CUA | GAU | CC | | | 74 | H16A(+92+116) | CAU | GCU | UCC | GUC | UUC | UGG | GUC | ACU | G | | | 75 | H16A(+45+67) | G A | טכ טו | JG UT | JU GA | AG U | JA A | JA C | AG U | | | | 76 | H16A(+105+126) | GUU | AUC | CAG | CCA | UGC | UUC | CGU | C | | | | 77 | H16D(+05-20) | UGA | UAA | UUG | GUA | UCA | CUA | ACC | UGU | G | | | 78 | H16D(+12-11) | GUA | UCA | CUA | ACC | UGU | GCU | GUA | C | | | | 79 | H19A(+35+53) | CUG | CUG | GCA | UCU | UGC | AGU | U | | | | | 80 | H19A(+35+65) | GCC
AGU | | GCU | GAU | CUG | CUG | GCA | UCU | UGC | | | 81 | H20A(+44+71) | CUG | GCA | GAA | UUC | GAU | CCA | CCG | GCU | GUU C | | | 82 | H20A(+147+168) | CAG | CAG | UAG | UUG | UCA | UCU | GCU | C | | | | 83 | H20A(+185+203) | UGA | UGG | GGU | GGU | GGG | UUG | G | | | | | 84 | H20A(-08+17) | AUC | UGC | AUU | AAC | ACC | CUC | UAG | AAA | G | | | 85 | H20A(+30+53) | CCG | GCU | GUU | CAG | UUG | UUC | UGA | GGC | | | | 86 | H20A(-11+17) | AUC | UGC | AUU | AAC | ACC | CUC |
UAG | AAA | GAA A | | | 87 | H20D(+08-20) | GAA | GGA | GAA | GAG | AUU | CUU | ACC | UUA | CAA A | | | 88 | H20A(+44+63) | AUU | CGA | UCC | ACC | GGC | UGU | UC | | | | | 89 | H20A(+149+168 | CAG | CAG | UAG | UUG | UCA | UCU | GC | | | | | 90 | H21A(-06+16) | GCC | GGU | UGA | CUU | CAU | CCU | GUG | C | | | | 91 | H21A(+85+106) | CUG | CAU | CCA | GGA | ACA | UGG | GUC | С | | | | 92 | H21A(+85+108) | GUC | UGC | AUC | CAG | GAA | CAU | GGG | UC | | | | SEQ II | O SEQUENCE | NUCI | LEOT | IDE : | SEQUI | ENCE | (5'- | -3') | | | |--------|----------------|------|------|-------|-------|------|------|------|-----|-----| | 93 | H21A(+08+31) | GUU | GAA | GAU | CUG | AUA | GCC | GGU | UGA | | | 94 | H21D(+18-07) | UAC | UUA | CUG | UCU | GUA | GCU | CUU | UCU | | | 95 | H22A(+22+45) | CAC | UCA | UGG | UCU | CCU | GAU | AGC | GCA | | | 96 | H22A(+125+106) | CUG | CAA | UUC | CCC | GAG | UCU | CUG | С | | | 97 | H22A(+47+69) | ACU | GCU | GGA | CCC | AUG | UCC | UGA | UG | | | 98 | H22A(+80+101) | CUA | AGU | UGA | GGU | AUG | GAG | AGU | | | | 99 | H22D(+13-11) | UAU | UCA | CAG | ACC | UGC | AAU | UCC | CC | | | 100 | H23A(+34+59) | ACA | GUG | GUG | CUG | AGA | UAG | UAU | AGG | CC | | 101 | H23A(+18+39) | UAG | GCC | ACU | UUG | UUG | CUC | UUG | С | | | 102 | H23A(+72+90) | UUC | AGA | GGG | CGC | טטט | CUU | С | | | | 103 | H24A(+48+70) | GGG | CAG | GCC | AUU | CCU | CCU | UCA | GA | | | 104 | H24A(-02+22) | UCU | UCA | GGG | טטט | GUA | UGU | GAU | UCU | | | 105 | H25A(+9+36) | CUG | GGC | UGA | AUU | GUC | UGA | AUA | UCA | CUG | | 106 | H25A(+131+156) | CUG | UUG | GCA | CAU | GUG | AUC | CCA | CUG | AG | | 107 | H25D(+16-08) | GUC | UAU | ACC | UGU | UGG | CAC | AUG | UGA | | | 108 | H26A(+132+156) | UGC | טטט | CUG | UAA | UUC | AUC | UGG | AGU | U | | 109 | H26A(-07+19) | CCU | CCU | UUC | UGG | CAU | AGA | CCU | UCC | AC | | 110 | H26A(+68+92) | UGU | GUC | AUC | CAU | UCG | UGC | AUC | UCU | G | | 111 | H27A(+82+106) | UUA | AGG | CCU | CUU | GUG | CUA | CAG | GUG | G | | 112 | H27A(-4+19) | GGG | GCU | CUU | CUU | UAG | CUC | UCU | GA | | | 113 | H27D(+19-03) | GAC | UUC | CAA | AGU | CUU | GCA | טטט | C | | | 114 | H28A(-05+19) | GCC | AAC | AUG | CCC | AAA | CUU | CCU | AAG | | | 115 | H28A(+99+124) | CAG | AGA | טטט | CCU | CAG | CUC | CGC | CAG | GA | | 116 | H28D(+16-05) | CUU | ACA | UCU | AGC | ACC | UCA | GAG | | | | 117 | H29A(+57+81) | UCC | GCC | AUC | UGU | UAG | GGU | CUG | UGC | С | | 118 | H29A(+18+42) | AUU | UGG | GUU | AUC | CUC | UGA | AUG | UCG | C | | 119 | H29D(+17-05) | CAU | ACC | UCU | UCA | UGU | AGU | UCC | С | | | 120 | H30A(+122+147) | CAU | UUG | AGC | UGC | GUC | CAC | CUU | GUC | UG | | 121 | H30A(+25+50) | UCC | UGG | GCA | GAC | UGG | AUG | CUC | UGU | UC | | 122 | H30D(+19-04) | UUG | CCU | GGG | CUU | CCU | GAG | GCA | υυ | | | 123 | H31D(+06-18) | UUC | UGA | AAU | AAC | AUA | UAC | CUG | UGC | | | 124 | H31D(+03-22) | UAG | טטט | CUG | AAA | UAA | CAU | AUA | CCU | G | | 125 | H31A(+05+25) | GAC | UUG | UCA | AAU | CAG | AUU | GGA | | | | 126 | H31D(+04-20) | GUU | UCU | GAA | AUA | ACA | UAU | ACC | UGU | | | SEQ II | O SEQUENCE | | | | SEQUI | ENCE | (5' | -3') | | | |--------|----------------|------------|-----|-----|-------|------|-----|------|-----|-----| | 127 | H32D(+04-16) | CAC | CAG | AAA | UAC | AUA | CCA | CA | | | | 128 | H32A(+151+170) | CAA | UGA | טטט | AGC | UGU | GAC | UG | | | | 129 | H32A(+10+32) | CGA | AAC | UUC | AUG | GAG | ACA | UCU | UG | | | 130 | H32A(+49+73) | CUU | GUA | GAC | GCU | GCU | CAA | AAU | UGG | С | | 131 | H33D(+09-11) | CAU | GCA | CAC | ACC | טטט | GCU | CC | | | | 132 | H33A(+53+76) | UCU | GUA | CAA | UCU | GAC | GUC | CAG | UCU | | | 133 | H33A(+30+56) | GUC | טטט | AUC | ACC | AUU | UCC | ACU | UCA | GAC | | 134 | H33A(+64+88) | CCG | UCU | GCU | טטט | UCU | GUA | CAA | UCU | G | | 135 | H34A(+83+104) | UCC | AUA | UCU | GUA | GCU | GCC | AGC | С | | | 136 | H34A(+143+165) | CCA | GGC | AAC | UUC | AGA | AUC | CAA | AU | | | 137 | H34A(-20+10) | UUU
GAA | CUG | UUA | CCU | GAA | AAG | AAU | UAU | AAU | | 138 | H34A(+46+70) | CAU | UCA | טטט | CCU | UUC | GCA | UCU | UAC | G | | 139 | H34A(+95+120) | UGA | UCU | CUU | UGU | CAA | UUC | CAU | AUC | UG | | 140 | H34D(+10-20) | UUC
CAG | AGU | GAU | AUA | GGU | טטט | ACC | טטט | CCC | | 141 | H34A(+72+96) | CUG | UAG | CUG | CCA | GCC | AUU | CUG | UCA | AG | | 142 | H35A(+141+161) | UCU | UCU | GCU | CGG | GAG | GUG | ACA | | | | 143 | H35A(+116+135) | CCA | GUU | ACU | AUU | CAG | AAG | AC | | | | 144 | H35A(+24+43) | UCU | UCA | GGU | GCA | CCU | UCU | GU | | | | 145 | H36A(+26+50) | UGU | GAU | GUG | GUC | CAC | AUU | CUG | GUC | A | | 146 | H36A(-02+18) | CCA | UGU | GUU | UCU | GGU | AUU | CC | | | | 147 | H37A(+26+50) | CGU | GUA | GAG | UCC | ACC | טטט | GGG | CGU | A | | 148 | H37A(+82+105) | UAC | UAA | טטט | CCU | GCA | GUG | GUC | ACC | | | 149 | H37A(+134+157) | UUC | UGU | GUG | AAA | UGG | CUG | CAA | AUC | | | 150 | H38A(-01+19) | CCU | UCA | AAG | GAA | UGG | AGG | CC | | | | 151 | H38A(+59+83) | UGC | UGA | AUU | UCA | GCC | UCC | AGU | GGU | U | | 152 | H38A(+88+112) | UGA | AGU | CUU | CCU | CUU | UCA | GAU | UCA | С | | 153 | H39A(+62+85) | CUG | GCU | UUC | UCU | CAU | CUG | UGA | UUC | | | 154 | H39A(+39+58) | GUU | GUA | AGU | UGU | CUC | CUC | υυ | | | | 155 | H39A(+102+121) | UUG | UCU | GUA | ACA | GCU | GCU | GU | | | | 156 | H39D(+10-10) | GCU | CUA | AUA | CCU | UGA | GAG | CA | | | | 157 | H40A(-05+17) | CUU | UGA | GAC | CUC | AAA | UCC | UGU | U | | | 158 | H40A(+129+153) | CUU | UAU | טטט | CCU | UUC | AUC | UCU | GGG | С | | 159 | H42A(-04+23) | AUC | GUU | UCU | UCA | CGG | ACA | GUG | UGC | UGG | | 160 | H42A(+86+109) | GGG | CUU | GUG | AGA | CAU | GAG | UGA | טטט | | | SEQ II | SEQUENCE | NUC | LEOT: | IDE S | SEQUI | ENCE | (5' | -3') | | | | |--------|----------------------------|------------|------------|-------|-------|------|--------|---------|-----|-----|----| | 161 | H42D(+19-02) | Δ C | ~II II | a G | 2G G | AC U | יר וונ | יוו ווי | 3C | | | | 162 | H43D(+10-15) | | | | | ACC | | | | C | | | 163 | H43A(+101+120) | | | | | | | | 000 | C | | | 164 | H43A(+78+100) | | | | | CAG | | | CA | | | | 165 | H44A(+85+104) | | | | | UGA | | | Cri | | | | 166 | H44D(+10-10) | | | | | UAA | | | | | | | 167 | H44A(-06+14) | | | | | GCC | | | | | | | 168 | | | | | | | | | | | | | | H46D(+16-04) | | | | | GCU | | | | | | | 169 | H46A(+90+109) | | | | | UGG | | | | | | | 170 | H47A(+76+100) | | | | | UUA | | | | | | | 171 | H47D(+25-02) | | | | | UGG | | | GUC | UGC | | | 172 | H47A(-9+12) | UUC | CAC | CAG | UAA | CUG | AAA | CAG | | | | | 173 | H50A(+02+30) | CCA | CUC | AGA | GCU | CAG | AUC | UUC | UAA | CUU | CC | | 174 | H50A(+07+33) | CUU | CCA | CUC | AGA | GCU | CAG | AUC | UUC | UAA | | | 175 | H50D(+07-18) | GGG | AUC | CAG | UAU | ACU | UAC | AGG | CUC | С | | | 176 | H51A(-01+25) | ACC | AGA | GUA | ACA | GUC | UGA | GUA | GGA | GC | | | 177 | H51D(+16-07) | CUC | AUA | CCU | UCU | GCU | UGA | UGA | UC | | | | 178 | H51A(+111+134) | UUC | UGU | CCA | AGC | CCG | GUU | GAA | AUC | | | | 179 | H51A(+61+90) | ACA
UGG | UCA | AGG | AAG | AUG | GCA | טטט | CUA | GUU | | | 180 | H51A(+66+90) | ACA | UCA | AGG | AAG | AUG | GCA | טטט | CUA | G | | | 181 | H51A(+66+95) | CUC
UAG | CAA | CAU | CAA | GGA | AGA | UGG | CAU | UUC | | | 182 | H51D(+08-17) | AUC | AUU | טטט | UCU | CAU | ACC | UUC | UGC | U | | | 183 | H51A/D(+08-17)
& (-15+) | | AUU
CUA | | UCU | CAU | ACC | UUC | UGC | UAG | | | 184 | H51A(+175+195) | CAC | CCA | CCA | UCA | CCC | UCU | GUG | | | | | 185 | H51A(+199+220) | AUC | AUC | UCG | UUG | AUA | UCC | UCA | A | | | | 186 | H52A(-07+14) | UCC | UGC | AUU | GUU | GCC | UGU | AAG | | | | | 187 | H52A(+12+41) | UCC | AAC | UGG | GGA | CGC | CUC | UGU | UCC | AAA | | | 188 | H52A(+17+37) | ACU | GGG | GAC | GCC | UCU | GUU | CCA | | | | | 189 | H52A(+93+112) | CCG | UAA | UGA | UUG | UUC | UAG | CC | | | | | 190 | H52D(+05-15) | UGU | UAA | AAA | ACU | UAC | UUC | GA | | | | | 191 | H53A(+45+69) | CAU | UCA | ACU | GUU | GCC | UCC | GGU | UCU | G | | | 192 | H53A(+39+62) | CUG | UUG | CCU | CCG | GUU | CUG | AAG | GUG | | | #### TABLE 1A-continued Description of 2'-O-methyl phosphorothioate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. Since these 2'-O-methyl antisense oligonucleotides are more RNA-like, U represents uracil. With other antisense chemistries such as peptide nucleic acids or morpholinos, these U bases may be shown as "T". | SEQ II | SEQUENCE | NUCI | LEOT | IDE S | EQUE | ENCE | (5'- | -3') | | | | |--------|----------------|------------|----------|-------|------|------|------|------|-----|-----|---| | 193 | H53A(+39+69) | CAU
GGU | UCA
G | ACU | GUU | GCC | UCC | GGU | UCU | GAA | | | 194 | H53D(+14-07) | UAC | UAA | CCU | UGG | טטט | CUG | UGA | | | | | 195 | H53A(+23+47) | CUG | AAG | GUG | UUC | UUG | UAC | UUC | AUC | С | | | 196 | H53A(+150+176) | UGU | AUA | GGG | ACC | CUC | CUU | CCA | UGA | CUC | | | 197 | H53D(+20-05) | CUA | ACC | UUG | GUU | UCU | GUG | AUU | UUC | U | | | 198 | H53D(+09-18) | GGU | AUC | טטט | GAU | ACU | AAC | CUU | GGU | UUC | | | 199 | H53A(-12+10) | AUU | CUU | UCA | ACU | AGA | AUA | AAA | G | | | | 200 | H53A(-07+18) | GAU | UCU | GAA | UUC | טטט | CAA | CUA | GAA | Ū | | | 201 | H53A(+07+26) | AUC | CCA | CUG | AUU | CUG | AAU | UC | | | | | 202 | H53A(+124+145) | UUG | GCU | CUG | GCC | UGU | CCU | AAG | A | | | | 203 | H46A(+86+115) | CUC
AGC | טטט | UCC | AGG | UUC | AAG | UGG | GAU | ACU | | | 204 | H46A(+107+137) | CAA
UUC | | טטט | CUU | UUA | GUU | GCU | GCU | CUU | | | 205 | H46A(-10+20) | UAU
AAG | UCU | טטט | GUU | CUU | CUA | GCC | UGG | AGA | | | 206 | H46A(+50+77) | CUG | CUU | CCU | CCA | ACC | AUA | AAA | CAA | AUU | С | | 207 | H45A(-06+20) | CCA | AUG | CCA | UCC | UGG | AGU | UCC | UGU | AA | | | 208 | H45A(+91 +110) | UCC
 UGU | AGA | AUA | CUG | GCA | UC | | | | | 209 | H45A(+125+151) | UGC | AGA | CCU | CCU | GCC | ACC | GCA | GAU | UCA | | | 210 | H45D(+16-04) | CUA | CCU | CUU | טטט | UCU | GUC | UG | | | | | 211 | H45A(+71+90) | UGU | טטט | UGA | GGA | UUG | CUG | AA | | | | #### TABLE 1B Description of a cocktail of 2'-0-methyl phosphorothioate antisense oligonuclectides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. | SEQ | | | | | | | | | | 55 | |----------|--------------------------------|------------|----------|-------|-------|------|------|------|------|----| | ID | SEQUENCE | NUCI | LEOT | IDE S | EQUI | ENCE | (5'- | -3') | | | | 81
82 | H20A(+44+71)
H20A(+147+168) | | GCA
C | GAA | UUC | GAU | CCA | CCG | GCU | | | | , | | CAG | UAG | UUG | UCA | UCU | GCU | С | 60 | | 80
81 | H19A(+35+65)
H20A(+44+71) | GCC
UGC | UGA | GCU | GAU | CUG | CUG | GCA | UCU | | | 82 | H20A(+147+168) | AGU | U
GCA | מאא | IIIIC | CAII | CCA | ccc | CCII | | | | | GUU | | GAA | 000 | GAU | CCA | CCG | GCU | 65 | | | | CAG | CAG | UAG | UUG | UCA | UCU | GCU | C | | #### TABLE 1B-continued Description of a cocktail of 2'-O-methyl phosphorothicate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. | | SEQ
ID | SEQUENCE | NUC | LEOT] | DE S | SEQUE | ENCE | (5'- | -3') | | |---|-----------|------------------------------|-----|-------|------|-------|------|------|------|-----| |) | | H53D(+14-07)
H53A(+23+47) | | | | | | | | | | 5 | 196 | H53A(+150+175) | | - | GGG | ACC | CUC | CUU | CCA | UGA | I 1C Description of a "weasel" of 2'-0-methyl phosphorothicate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA. | SEQ
ID | | NUCLEOTIDE SEQUENCE (5'-3') | |-----------|-------------------------|--| | | | CUG GCA GAA UUC GAU CCA CCG GCU GUU C-CAG CAG UAG UUG UCA UCU GCU C | | 80 | | GCC UGA GCU GAU CUG CUG GCA UCU UGC
AGU U | | | | -AUU CGA UCC ACC GGC UGU UC-
CUG CUG GCA UCU UGC AGU U | | 80 | | GCC UGA GCU GAU CUG CUG GCA UCU UGC AGU U | | 88 | H20A(+44+63) | -AUU CGA UCC ACC GGC UGU UC- | | 80 | | GCC UGA GCU GAU CUG CUG GCA UCU UGC
AGU U | | 79 | H20A(+149+168) | -CUG CUG GCA UCU UGC AGU U | | | | CAU UCA UUU CCU UUC GCA UCU UAC G-
UGA UCU CUU UGU CAA UUC CAU AUC UG | | 124 | H31D(+03-22)-
UU- | UAG UUU CUG AAA UAA CAU AUA CCU G-
UU- | | 144 | H35A(+24+43) | UCU UCA GGU GCA CCU UCU GU | | 195 | H53A(+23+47)-
AA- | CUG AAG GUG UUC UUG UAC UUC AUC C- | | 196 | H53A(+150+175) -
AA- | UGU AUA GGG ACC CUC CUU CCA UGA CUC-
AA- | | 194 | | UAC UAA CCU UGG UUU CUG UGA | | | Aimed at exons 19/20/20 | CAG CAG UAG UUG UCA UCU GCU CAA CUG
GCA GAA UUC GAU CCA CCG GCU GUU CAA
GCC UGA GCU GAU CUG CUC GCA UCU
UGC AGU | # DETAILED DESCRIPTION OF THE INVENTION #### General Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variation and 45 modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in the specification, individually or collectively and any and all combinations or any two or more of the steps or features. The present invention is not to be limited in scope by the specific embodiments described herein, which are intended for the purpose of exemplification only. Functionally equivalent products, compositions and methods are clearly within the scope of the invention as described herein. Sequence identity numbers (SEQ ID NO:) containing nucleotide and amino acid sequence information included in this specification are collected at the end of the description and have been prepared using the programme Patentln Version 3.0. Each nucleotide or amino acid sequence is 60 identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g. <210>1, <210 >2, etc.). The length, type of sequence and source organism for each nucleotide or amino acid sequence are indicated by information provided in the numeric indicator 65 fields <211>, <212> and <213>, respectively. Nucleotide and amino acid sequences referred to in the specification are defined by the information provided in numeric indicator field <400> followed by the sequence identifier (e.g. <400>1, <400>2, etc.). 22 An antisense molecules nomenclature system was proposed and published to distinguish between the different antisense molecules (see Mann et al., (2002) *J Gen Med* 4, 644-654). This nomenclature became especially relevant when testing several slightly different antisense molecules, all directed at the same target region, as shown below: H#A/D(x.y). The first letter designates the species (e.g. H: human, M: 50 murine, C: canine) "#" designates target dystrophin exon number. "A/D" indicates acceptor or donor splice site at the beginning and end of the exon, respectively. (x y) represents the annealing coordinates where "-" or "+" indicate intronic or exonic sequences respectively. As an example, A(-6+18) would indicate the last 6 bases of the intron preceding the target exon and the first 18 bases of the target exon. The closest splice site would be the acceptor so these coordinates would be preceded with an "A". Describing annealing coordinates at the donor splice site could be D(+2-18) where the last 2 exonic bases and the first 18 intronic bases correspond to the annealing site of the antisense molecule. Entirely exonic annealing coordinates that would be represented by A(+65+85), that is the site between the 65th and 85th nucleotide from the start of that exon. The entire disclosures of all publications (including patents, patent applications, journal articles, laboratory manu- als, books, or other documents) cited herein are hereby incorporated by reference. No admission is made that any of the references constitute prior art or are part of the common general knowledge of those working in the field to which this invention relates. As used necessarily herein the term "derived" and "derived from" shall be taken to indicate that a specific integer may be obtained from a particular source albeit not directly from that source. Throughout this specification, unless the context requires ¹⁰ otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. Other definitions for selected terms used herein may be 15 found within the detailed description of the invention and apply throughout. Unless otherwise defined, all other scientific and technical terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which the invention belongs. #### Description of the Preferred Embodiment When antisense molecule(s) are targeted to nucleotide sequences involved in splicing in exons within pre-mRNA 25 sequences, normal splicing of the exon may be inhibited causing the splicing machinery to by-pass the entire mutated exon from the mature mRNA. The concept of antisense oligonucleotide induced exon skipping is shown in FIG. 2. In many genes, deletion of an entire exon would lead to the 30 production of a non-functional protein through the loss of important functional domains or the disruption of the reading frame. In some proteins, however, it is possible to shorten the protein by deleting one or more exons, without disrupting the reading frame, from within the protein with- 35 out seriously altering the biological activity of the protein. Typically, such proteins have a structural role and or possess functional domains at their ends. The present invention describes antisense molecules capable of binding to specified dystrophin pre-mRNA targets and re-directing process- 40 ing of that gene. #### Antisense Molecules According to a first aspect of the invention, there is provided antisense molecules capable of binding to a selected target to induce exon skipping. To induce exon 45 skipping in exons of the Dystrophin gene transcript, the antisense molecules are preferably selected from the group of compounds shown in Table 1A. There is also provided a combination or "cocktail" of two or more antisense oligonucleotides capable of binding to a selected target to induce exon skipping. To induce exon skipping in exons of the Dystrophin gene transcript, the antisense molecules in a "cocktail" are preferably selected from the group of compounds shown in Table 1B. Alternatively, exon skipping may be induced by antisense oligonucleotides joined together 55 "weasels" preferably selected from the group of compounds shown in Table 1C. Designing antisense molecules to completely mask consensus splice sites may not necessarily generate any skipping of the targeted exon. Furthermore, the inventors have 60 discovered that size or length of the antisense oligonucleotide itself is not always a primary factor when designing antisense molecules. With some targets such as exon 19, antisense oligonucleotides as short as 12 bases were able to induce exon skipping, albeit not as efficiently as longer 65 (20-31 bases) oligonucleotides. In some other targets, such as murine dystrophin exon 23, antisense oligonucleotides 24 only 17 residues long were able to induce more efficient skipping than another overlapping compound of 25 nucleotides The inventors have also discovered that there does not appear to be any standard motif that can be blocked or masked by antisense molecules to redirect splicing. In some exons, such as mouse dystrophin exon 23, the
donor splice site was the most amenable to target to re-direct skipping of that exon. It should be noted that designing and testing a series of exon 23 specific antisense molecules to anneal to overlapping regions of the donor splice site showed considerable variation in the efficacy of induced exon skipping. As reported in Mann et al., (2002) there was a significant variation in the efficiency of bypassing the nonsense mutation depending upon antisense oligonucleotide annealing ("Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy". J Gen Med 4: 644-654). Targeting the acceptor site of exon 23 or several internal domains was not found to induce any 20 consistent exon 23 skipping. In other exons targeted for removal, masking the donor splice site did not induce any exon skipping. However, by directing antisense molecules to the acceptor splice site (human exon 8 as discussed below), strong and sustained exon skipping was induced. It should be noted that removal of human exon 8 was tightly linked with the co-removal of exon 9. There is no strong sequence homology between the exon 8 antisense oligonucleotides and corresponding regions of exon 9 so it does not appear to be a matter of cross reaction. Rather the splicing of these two exons is inextricably linked. This is not an isolated instance as the same effect is observed in canine cells where targeting exon 8 for removal also resulted in the skipping of exon 9. Targeting exon 23 for removal in the mouse dystrophin pre-mRNA also results in the frequent removal of exon 22 as well. This effect occurs in a dose dependent manner and also indicates close coordinated processing of 2 adjacent exons. In other targeted exons, antisense molecules directed at the donor or acceptor splice sites did not induce exon skipping while annealing antisense molecules to intra-exonic regions (i.e. exon splicing enhancers within human dystrophin exon 6) was most efficient at inducing exon skipping. Some exons, both mouse and human exon 19 for example, are readily skipped by targeting antisense molecules to a variety of motifs. That is, targeted exon skipping is induced after using antisense oligonucleotides to mask donor and acceptor splice sites or exon splicing enhancers. To identify and select antisense oligonucleotides suitable for use in the modulation of exon skipping, a nucleic acid sequence whose function is to be modulated must first be identified. This may be, for example, a gene (or mRNA transcribed form the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. Within the context of the present invention, preferred target site(s) are those involved in mRNA splicing (i.e. splice donor sites, splice acceptor sites, or exonic splicing enhancer elements). Splicing branch points and exon recognition sequences or splice enhancers are also potential target sites for modulation of mRNA splicing. Preferably, the present invention aims to provide antisense molecules capable of binding to a selected target in the dystrophin pre-mRNA to induce efficient and consistent exon skipping. Duchenne muscular dystrophy arises from mutations that preclude the synthesis of a functional dystrophin gene product. These Duchenne muscular dystrophy gene defects are typically nonsense mutations or genomic rearrangements such as deletions, duplications or microdeletions or insertions that disrupt the reading frame. As the human dystrophin gene is a large and complex gene with the 79 exons being spliced together to generate a mature mRNA with an open reading frame of approximately 11,000 bases, 5 there are many positions where these mutations can occur. Consequently, a comprehensive antisense oligonucleotide based therapy to address many of the different disease-causing mutations in the dystrophin gene will require that many exons can be targeted for removal during the splicing 10 process. Within the context of the present invention, preferred target site(s) are those involved in mRNA splicing (i.e. splice donor sites, splice acceptor sites or exonic splicing enhancer elements). Splicing branch points and exon recognition 15 sequences or splice enhancers are also potential target sites for modulation of mRNA splicing. The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleo- 20 tides which can hydrogen bond with each other. Thus, "specifically hybridisable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or 25 RNA target. It is understood in the art that the sequence of an antisense molecule need not be 100% complementary to that of its target sequence to be specifically hybridisable. An antisense molecule is specifically hybridisable when binding of the compound to the target DNA or RNA molecule 30 interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physi- 35 ological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed. While the above method may be used to select antisense molecules capable of deleting any exon from within a 40 protein that is capable of being shortened without affecting its biological function, the exon deletion should not lead to a reading frame shift in the shortened transcribed mRNA. Thus, if in a linear sequence of three exons the end of the first exon encodes two of three nucleotides in a codon and 45 the next exon is deleted then the third exon in the linear sequence must start with a single nucleotide that is capable of completing the nucleotide triplet for a codon. If the third exon does not commence with a single nucleotide there will be a reading frame shift that would lead to the generation of 50 truncated or a non-functional protein. It wilt be appreciated that the codon arrangements at the end of exons in structural proteins may not always break at the end of a codon, consequently there may be a need to delete more than one exon from the pre-mRNA to ensure 55 in-frame reading of the mRNA. In such circumstances, a plurality of antisense oligonucleotides may need to be selected by the method of the invention wherein each is directed to a different region responsible for inducing splicing in the exons that are to be deleted. The length of an antisense molecule may vary so long as it is capable of binding selectively to the intended location within the pre-mRNA molecule. The length of such sequences can be determined in accordance with selection procedures described herein. Generally, the antisense molecule will be from about 10 nucleotides in length up to about 50 nucleotides in length. It will be appreciated however that any length of nucleotides within this range may be used in the method. Preferably, the length of the antisense molecule is between 17 to 30 nucleotides in length. 26 In order to determine which exons can be connected in a dystrophin gene, reference should be made to an exon boundary map. Connection of one exon with another is based on the exons possessing the same number at the 3' border as is present at the 5' border of the exon to which it is being connected. Therefore, if exon 7 were deleted, exon 6 must connect to either exons 12 or 18 to maintain the reading frame. Thus, antisense oligonucleotides would need to be selected which redirected splicing for exons 7 to 11 in the first instance or exons 7 to 17 in the second instance. Another and somewhat simpler approach to restore the reading frame around an exon 7 deletion would be to remove the two flanking exons. Induction of exons 6 and 8 skipping should result in an in-frame transcript with the splicing of exons 5 to 9. In practise however, targeting exon 8 for removal from the pre-mRNA results in the co-removal of exon 9 so the resultant transcript would have exon 5 joined to exon 10. The inclusion or exclusion of exon 9 does not alter the reading frame. Once the antisense molecules to be tested have been identified, they are prepared according to standard techniques known in the art. The most common method for producing antisense molecules is the methylation of the 2' hydroxyribose position and the incorporation of a phosphorothioate backbone produces molecules that superficially resemble RNA but that are much more resistant to nuclease degradation. To avoid degradation of pre-mRNA during duplex formation with the antisense molecules, the antisense molecules used in the method may be adapted to minimise or prevent cleavage by endogenous RNase H. This property is highly preferred as the treatment of the RNA with the unmethylated oligonucleotides either intracellularly or in crude extracts that contain RNase H leads to degradation of the pre-mRNA: antisense oligonucleotide duplexes. Any form of modified antisense molecules that is capable of by-passing or not inducing such degradation may be used in the present method. An example of antisense molecules which when duplexed with RNA are not cleaved by cellular RNase H is 2'-O-methyl derivatives. 2'-O-methyl-oligoribonucleotides are very stable in a cellular environment and in animal tissues, and their duplexes with RNA have higher Tm values than their ribo- or deoxyribo-counterparts. Antisense molecules that do not activate RNase H can be made in accordance with known techniques (see, e.g., U.S. Pat. No. 5,149,797). Such antisense molecules, which may be deoxyribonucleotide or ribonucleotide sequences, simply contain any structural
modification which sterically hinders or prevents binding of RNase H to a duplex molecule containing the oligonucleotide as one member thereof, which structural modification does not substantially hinder or disrupt duplex formation. Because the portions of the oligonucleotide involved in duplex formation are substantially different from those portions involved in RNase H binding thereto, numerous antisense molecules that do not activate RNase H are available. For example, such antisense molecules may be oligonucleotides wherein at least one, or all, of the inter-nucleotide bridging phosphate residues are modified phosphates, such as methyl phosphonates, methyl phosphorothioates, phosphoromorpholidates, phosphoropiperazidates and phosphoramidates. For example, every other one of the internucleotide bridging phosphate residues may be modified as described. In another non-limiting example, such antisense molecules are molecules wherein at least one, or all, of the nucleotides contain a 2' lower alkyl moiety (e.g., C_1 - C_4 , linear or branched, saturated or unsaturated alkyl, such as methyl, ethyl, ethenyl, propyl, 1-propenyl, 2-propenyl, and isopropyl). For example, every other one of the nucleotides may be modified as described. While antisense oligonucleotides are a preferred form of 5 the antisense molecules, the present invention comprehends other oligomeric antisense molecules, including but not limited to oligonucleotide mimetics such as are described below Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural inter-nucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a 15 phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their inter-nucleoside backbone can also be considered to be oligonucleosides. In other preferred oligonucleotide mimetics, both the sugar and the inter-nucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric 25 compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugarbackbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine 30 backbone. The nucleo-bases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Modified oligonucleotides may also contain one or more substituted sugar moieties. Oligonucleotides may also 35 include nucleobase (often referred to in the art simply as "base") modifications or substitutions. Certain nucleo-bases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 40 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications. Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonucle-50 otide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-55 O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety. It is not necessary far all positions in a given compound 60 to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds that are chimeric compounds. "Chimeric" 65 antisense compounds or "chimeras," in the context of this invention, are antisense molecules, particularly oligonucle- otides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the increased resistance to nuclease degradation, increased cellular uptake, and an additional region for increased binding affinity for the target nucleic acid. 28 Methods of Manufacturing Antisense Molecules The antisense molecules used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). One method for synthesising oligonucleotides on a modified solid support is described in U.S. Pat. No. 4,458,066. Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates ~ and alkylated derivatives. In one such automated embodiment, diethyl-phosphoramidites are used as starting materials and may be synthesized as described by Beaucage, et al., (1981) *Tetrahedron Letters*, 22:1859-1862. The antisense molecules of the invention are synthesised in vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules. The molecules of the invention may also be mixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Therapeutic Agents The present invention also can be used as a prophylactic or therapeutic, which may be utilised for the purpose of treatment of a genetic disease. Accordingly, in one embodiment the present invention provides antisense molecules that bind to a selected target in the dystrophin pre-mRNA to induce efficient and consistent exon skipping described herein in a therapeutically effective amount admixed with a pharmaceutically acceptable carrier, diluent, or excipient. The phrase "pharmaceutically acceptable" refers to molecular entities and compositions that are physiologically tolerable and do not typically produce an allergic or similarly untoward reaction, such as gastric upset and the like, when administered to a patient. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water or saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in Martin, *Remington's Pharmaceutical Sciences*, 18th Ed., Mack Publishing Co., Easton, Pa., (1990). In a more specific form of the invention there are provided pharmaceutical compositions comprising therapeutically effective amounts of an antisense molecule together with pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers. Such compositions include diluents of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength and additives such as detergents and solubilizing agents (e.g., contents of the vesicle to the target cell cytoplasm at high efficiency; and (4) accurate and effective expression of genetic information (Mannino, et al., Biotechniques, 6:682, 1988). 30 Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, mannitol). The material may be incorporated into particulate preparations of polymeric compounds such as polylactic 5 acid, polyglycolic acid, etc. or into liposomes. Hylauronic acid may also be used. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the present proteins and derivatives. See, e.g., Martin, Remington's Pharmaceutical Sciences, 18th 10 Ed. (1990, Mack Publishing Co., Easton, Pa. 18042) pages 1435-1712 that are herein incorporated by reference. The compositions may be prepared in liquid form, or may be in dried powder, such as lyophilised form. The composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations. Alternatively, the antisense construct may be combined It will be appreciated that pharmaceutical compositions 15 provided according to the present invention may be
administered by any means known in the art. Preferably, the pharmaceutical compositions for administration are administered by injection, orally, or by the pulmonary, or nasal ered by intravenous, intra-arterial, intraperitoneal, intramuscular, or subcutaneous routes of administration. with other pharmaceutically acceptable carriers or diluents to produce a pharmaceutical composition. Suitable carriers and diluents include isotonic saline solutions, for example phosphate-buffered saline. The composition may be formulated for parenteral, intramuscular, intravenous, subcutaneous, intraocular, oral or transdermal administration. The routes of administration described are intended only Antisense Molecule Based Therapy route. The antisense molecules are more preferably deliv- 20 as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and any dosage for any particular animal and condition. Multiple approaches for introducing functional new genetic material into cells, both in vitro and in vivo have been attempted (Friedmann (1989) Science, 244:1275-1280). Also addressed by the present invention is the use of antisense molecules of the present invention, for manufac- 25 ture of a medicament for modulation of a genetic disease. These approaches include integration of the gene to be expressed into modified retroviruses (Friedmann (1989) supra; Rosenberg (1991) Cancer Research 51(18), suppl.: 5074S-5079S); integration into non-retrovirus vectors (Rosenfeld, et al. (1992) Cell, 68:143-155; Rosenfeld, et al. (1991) Science, 252:431-434); or delivery of a transgene linked to a heterologous promoter-enhancer element via liposomes (Friedmann (1989), supra; Brigham, et al. (1989) Am. J. Med. Sci., 298:278-281; Nabel, et al. (1990) Science, 249:1285-1288; Hazinski, et al. (1991) Am. J. Resp. Cell Molec. Biol., 4:206-209; and Wang and Huang (1987) Proc. Natl. Acad. Sci. (USA), 84:7851-7855); coupled to ligandspecific, cation-based transport systems (Wu and Wu (1988) J. Biol. Chem., 263:14621-14624) or the use of naked DNA, expression vectors (Nabel et al. (1990), supra); Wolff et al. (1990) Science, 247:1465-1468). Direct injection of transgenes into tissue produces only localized expression (Rosenfeld (1992) supra); Rosenfeld et al. (1991) supra; Brigham et al. (1989) supra; Nabel (1990) supra; and Hazinski et al. (1991) supra). The Brigham et al. group (Am. J. Med. Sci. (1989) 298:278-281 and Clinical Research (1991) 39 (abstract)) have reported in vivo transfection only of lungs of mice following either intravenous or intratracheal administration of a DNA liposome complex. An example of a review article of human gene therapy procedures is: Anderson, Science (1992) 256:808-813. The delivery of a therapeutically useful amount of antisense molecules may be achieved by methods previously published. For example, intracellular delivery of the antisense molecule may be via a composition comprising an 30 admixture of the antisense molecule and an effective amount of a block copolymer. An example of this method is described in U.S. patent application US 20040248833. > The antisense molecules of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such pro-drugs, and other bioequivalents. Other methods of delivery of antisense molecules to the nucleus are described in Mann CJ et al., (2001) ["Antisense-35 induced exon skipping and the synthesis of dystrophin in the mdx mouse". Proc., Natl. Acad. Science, 98(1) 42-47J and in Gebski et al., (2003). Human Molecular Genetics, 12(15): A method for introducing a nucleic acid molecule into a 40 cell by way of an expression vector either as naked DNA or complexed to lipid carriers, is described in U.S. Pat. No. 6,806,084. > The term "pharmaceutically acceptable salts" refers to undesired toxicological effects thereto. It may be desirable to deliver the antisense molecule in a colloidal dispersion system. Colloidal dispersion systems 45 include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-inwater emulsions, micelles, mixed micelles, and liposomes or liposome formulations. > physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart Liposomes are artificial membrane vesicles which are 50 useful as delivery vehicles in vitro and in vivo. These formulations may have net cationic, anionic or neutral charge characteristics and are useful characteristics with in vitro, in vivo and ex vivo delivery methods. It has been shown that large unilamellar vesicles (LUV), which range in 55 size from 0.2-4.0.PHI.m can encapsulate a substantial percentage of an aqueous buffer containing large macromolecules. RNA, and DNA can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, et al., Trends Biochem. Sci., 6:77, 60 > For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts In order for a liposome to be an efficient gene transfer vehicle, the following characteristics should be present: (1) encapsulation of the antisense molecule of interest at high efficiency while not compromising their biological activity; (2) preferential and substantial binding to a target cell in comparison to non-target cells; (3) delivery of the aqueous formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, malefic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bro- 15 mine, and iodine. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, (including by nebulizer, intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intra-arterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be 30 particularly useful for oral administration. The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product. Kits of the Invention The invention also provides kits for treatment of a patient $_{45}$ with a genetic disease which kit comprises at least an antisense molecule, packaged in a suitable container, together with instructions for its use. In a preferred embodiment, the kits will contain at least one antisense molecule as shown in Table 1A, or a cocktail of antisense molecules as shown in Table 1B or a "weasel" compound as shown in Table 1C. The kits may also contain peripheral reagents such as buffers, stabilizers, etc. Those of ordinary skill in the field should appreciate that 55 applications of the above method has wide application for identifying antisense molecules suitable for use in the treatment of many other diseases. #### **EXAMPLES** The following Examples serve to more fully describe the manner of using the above-described invention, as well as to set forth the best modes contemplated for carrying out various aspects of the invention. It is understood that these Examples in no way serve to limit the true scope of this 32 invention, but rather are presented for illustrative purposes. The references cited herein are expressly incorporated by reference. Methods of molecular cloning, immunology and protein chemistry, which are not explicitly described in the following examples, are reported in the literature and are known by those skilled in the art. General texts that described conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art, included, for example: Sambrook et al, *Molecular Cloning: A Laboratory Manual*, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989); Glover ed., *DNA Cloning: A Practical Approach*, Volumes I and II, MRL Press, Ltd., Oxford, U.K. (1985); and Ausubel, F., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. *Current Protocols in Molecular Biology*. Greene Publishing
Associates/Wiley Intersciences, New York (2002). #### Determining Induced Exon Skipping in Human Muscle Cells Attempts by the inventors to develop a rational approach in antisense molecules design were not completely successful as there did not appear to be a consistent trend that could be applied to all exons. As such, the identification of the most effective and therefore most therapeutic antisense molecules compounds has been the result of empirical studies. These empirical studies involved the use of computer programs to identify motifs potentially involved in the splicing process. Other computer programs were also used to identify regions of the pre-mRNA which may not have had extensive secondary structure and therefore potential sites for annealing of antisense molecules. Neither of these approaches proved completely reliable in designing antisense oligonucleotides for reliable and efficient induction of exon skipping. Annealing sites on the human dystrophin pre-mRNA were selected for examination, initially based upon known or predicted motifs or regions involved in splicing. 20Me antisense oligonucleotides were designed to be complementary to the target sequences under investigation and were synthesised on an Expedite 8909 Nucleic Acid Synthesiser. Upon completion of synthesis, the oligonucleotides were cleaved from the support column and de-protected in ammonium hydroxide before being desalted. The quality of the oligonucleotide synthesis was monitored by the intensity of the trityl signals upon each deprotection step during the synthesis as detected in the synthesis log. The concentration of the antisense oligonucleotide was estimated by measuring the absorbance of a diluted aliquot at 260 nm. Specified amounts of the antisense molecules were then tested for their ability to induce exon skipping in an in vitro assay, as described below. Briefly, normal primary myoblast cultures were prepared from human muscle biopsies obtained after informed consent. The cells were propagated and allowed to differentiate into myotubes using standard culturing techniques. The cells were then transfected with the antisense oligonucleotides by delivery of the oligonucleotides to the dells as cationic lipoplexes, mixtures of antisense molecules or cationic liposome preparations. The cells were then allowed to grow for another 24 hours, after which total RNA was extracted and molecular analysis commenced. Reverse transcriptase amplification (RT-PCR) was undertaken to study the targeted regions of the dystrophin pre-mRNA or induced exonic re-arrangements. For example, in the testing of an antisense molecule for inducing exon 19 skipping the RT-PCR test scanned several exons to detect involvement of any adjacent exons. For example, when inducing skipping of exon 19, RT-PCR was carried out with primers that amplified across exons 17 and 21. Amplifications of even larger products in this area (i.e. exons 13-26) were also carried out to ensure that there was minimal amplification bias for the shorter induced skipped transcript. Shorter or exon skipped products tend to be amplified more efficiently and may bias the estimated of the normal and induced transcript. The sizes of the amplification reaction products were estimated on an agarose gel and compared against appropriate size standards. The final confirmation of identity of these products was carried out by direct DNA sequencing to ²⁵ establish that the correct or expected exon junctions have been maintained. Once efficient exon skipping had been induced with one antisense molecule, subsequent overlapping antisense mol34 [SEQ ID NO: 4] was only able to induce exon 8 and 9 skipping at 300 nM, a concentration some 15 fold higher than H8A(-06+18), which is the preferred antisense molecule. This data shows that some particular antisense molecules induce efficient exon skipping while another antisense molecule, which targets a near-by or overlapping region, can be much less efficient. Titration studies show one compound is able to induce targeted exon skipping at 20 nM while the less efficient antisense molecules only induced exon skipping at concentrations of 300 nM and above. Therefore, we have shown that targeting of the antisense molecules to motifs involved in the splicing process plays a crucial role in the overall efficacy of that compound. Efficacy refers to the ability to induce consistent skipping of a target exon. However, sometimes skipping of the target exons is consistently associated with a flanking exon. That is, we have found that the splicing of some exons is tightly linked. For example, in targeting exon 23 in the mouse model of muscular dystrophy with antisense molecules directed at the donor site of that exon, dystrophin transcripts missing exons 22 and 23 are frequently detected. As another example, when using an antisense molecule directed to exon 8 of the human dystrophin gene, all induced transcripts are missing both exons 8 and 9. Dystrophin transcripts missing only exon 8 are not observed. Table 2 below discloses antisense molecule sequences that induce exon 8 (and 9) skipping. TABLE 2 | SEQ | Antisense
Oligonucleotide
IDname | Sequence | Ability to induce skipping | |-----|--|---|-----------------------------------| | 1 | H8A(-06+18) | 5'-GAU AGG UGG UAU CAA
CAU CUG UAA | Very strong to 20 nM | | 2 | H8A (-03+18) | 5'-GAU AGG UGG UAU CAA
CAU CUG | Very strong
skipping to 40 nM | | 3 | H8A(-07+18) | 5'-GAU AGG UGG UAU CAA
CAU CUG UAA G | Strong skipping to 40 nM | | 4 | H8A(-06+14) | 5'-GGU GGU AUC AAC AUC
UGU AA | Skipping to 300 nM | | 5 | H8A(-10+10) | 5'-GUA UCA ACA UCU GUA
AGC AC | Patchy/weak
skipping to 100 nm | ecules may be synthesized and then evaluated in the assay as described above. Our definition of an efficient antisense molecule is one that induces strong and sustained exon skipping at transfection concentrations in the order of 300 nM or less. ## Antisense Oligonucleotides Directed at Exon 8 Antisense oligonucleotides directed at exon 8 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described ⁶⁰ above FIG. 3 shows differing efficiencies of two antisense molecules directed at exon 8 acceptor splice site. H8A(-06+18) [SEQ ID NO:1], which anneals to the last 6 bases of intron 7 and the first 18 bases of exon 8, induces substantial exon 65 8 and 9 skipping when delivered into cells at a concentration of 20 nM. The shorter antisense molecule, H8A(-06+14) Antisense Oligonucleotides Directed at Exon 7 Antisense oligonucleotides directed at exon 7 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. FIG. 4 shows the preferred antisense molecule, H7A(+45+67) [SEQ ID NO: 6], and another antisense molecule, H7A(+2+26) [SEQ ID NO: 7], inducing exon 7 skipping. Nested amplification products span exons 3 to 9. Additional products above the induced transcript missing exon 7 arise from amplification from carry-over outer primers from the RT-PCR as well as heteroduplex formation. Table 3 below discloses antisense molecule sequences for induced exon 7 skipping. TABLE 3 | Antisense
SEQOligonucleotide
ID name | Sequence | Ability to induce skipping | |--|---|-----------------------------| | 6 H7A(+45+67) | 5'-UGC AUG UUC CAG UCG UUG UGU
GG | Strong skipping
to 20 nM | | 7 H7A(+02+26) | 5'-CAC UAU UCC AGU CAA AUA GGU
CUG G | Weak skipping at
100 nM | | 8 H7D(+15-10) | 5'-AUU UAC CAA CCU UCA GGA UCG
AGU A | Weak skipping to
300 nM | | 9 H7A(-18+03) | 5'-GGC CUA AAA CAC AUA CAC AUA | Weak skipping to 300 nM | Antisense oligonucleotides directed at exon 6 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described ²⁵ above. FIG. 5 shows an example of two non-preferred antisense molecules inducing very low levels of exon 6 skipping in cultured human cells. Targeting this exon for specific ³⁰ removal was first undertaken during a study of the canine model using the oligonucleotides as listed in Table 4, below. Some of the human specific oligonucleotides were also evaluated, as shown in FIG. 5. In this example, both antisense molecules target the donor splice site and only induced low levels of exon 6 skipping. Both H6D(+4-21) [SEQ ID NO: 17] and H6D(+18-4) [SEQ ID NO: 18] would be regarded as non-preferred antisense molecules. One antisense oligonucleotide that induced very efficient exon 6 skipping in the canine model, C6A(+69+91) [SEQ ID NO: 14], would anneal perfectly to the corresponding region in human dystrophin exon 6. This compound was evaluated, found to be highly efficient at inducing skipping of that target exon, as shown in FIG. 6 and is regarded as the preferred compound for induced exon 6 skipping. Table 4 below discloses antisense molecule sequences for induced exon 6 skipping. TABLE 4 | SEQ II | Antisense Oligo
Oname | Ability to induce
Sequence skipping | |--------|--------------------------|--| | 10 | C6A(-10+10) | 5' CAU UUU UGA CCU ACA UGU No skipping
GG | | 11 | C6A(-14+06) | 5' UUU GAC CUA CAU GUG GAA No skipping
AG | | 12 | C6A(-14+12) | 5' UAC AUU UUU GAC CUA CAU No skipping
GUG GAA AG | | 13 | C6A(-13+09) | 5' AUU UUU GAC CUA CAU GGG No skipping
AAA G | | 14 | CH6A(+69+91) | 5' UAC GAG UUG AUU GUC GGA Strong skipping to 20 $\ensuremath{\text{nM}}$ CCC AG | | 15 | C6D(+12-13) | 5' GUG GUC UCC UUA CCU AUG Weak skipping at 300 nM ACU GUG G | | 16 | C6D(+06-11) | 5' GGU CUC CUU ACC UAU GA No skipping | | 17 | H6D(+04-21) | 5' UGU CUC AGU AAU CUU CUU Weak skipping to 50 nM ACC UAU | | 18 | H6D(+18-04) | 5' UCU UAC CUA UGA CUA UGG Very
weak skipping to
AUG AGA 300 nM | Antisense Oligonucleotides Directed at Exon 4 Antisense oligonucleotides directed at exon 4 were prepared and tested for their ability to induce exon skipping in 5 human muscle cells using similar methods as described above. FIG. 7 shows an example of a preferred antisense molecule inducing skipping of exon 4 skipping in cultured human cells. In this example, one preferred antisense com- 38 pound, H4A(+13+32) [SEQ ID NO:19], which targeted a presumed exonic splicing enhancer induced efficient exon skipping at a concentration of 20 nM while other non-preferred antisense oligonucleotides failed to induce even low levels of exon 4 skipping. Another preferred antisense molecule inducing skipping of exon 4 was H4A(+111+40) [SEQ ID NO:22], which induced efficient exon skipping at a concentration of 20 nM. Table 5 below discloses antisense molecule sequences for inducing exon 4 skipping. TABLE 5 | SEQAntisense | | Ability to induce | |-------------------------|---|----------------------| | ID Oligonucleotide name | Sequence | skipping | | 19 H4A(+13+32) | 5' GCA UGA ACU CUU GUG GAU CC | Skipping to
20 nM | | 22 H4A(+11+40) | 5' UGU UCA GGG CAU GAA CUC UUG UGG
AUC CUU | Skipping to 20 nM | | 20 H4D(+04-16) | 5' CCA GGG UAC UAC UUA CAU UA | No skipping | | 21 H4D(-24-44) | 5' AUC GUG UGU CAC AGC AUC CAG | No skipping | 25 Antisense Oligonucleotides Directed at Exon 3 Antisense oligonucleotides directed at exon 3 were pre-30 pared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. H3A(+30+60) [SEQ ID NO:23] induced substantial exon 3 skipping when delivered into cells at a concentration of 20 nM to 600 nM. The antisense molecule, H3A(+35+65) [SEQ ID NO: 24] induced exon skipping at 300 nM. Table 6 below discloses antisense molecule sequences that induce exon 3 skipping. TABLE 6 | SEQ I | Antisense
DOligonucleotide name | Sequence | Ability to induce skipping | |-------|------------------------------------|--|---| | 23 | H3A(+30+60) | UAG GAG GCG CCU CCC AUC CUG UAG
GUC ACU G | Moderate
skipping to
20 to 600 nM | | 24 | H3A(+35+65) | AGG UCU AGG AGG CGC CUC CCA UCC
UGU AGG U | Working to
300 nM | | 25 | H3A(+30+54) | GCG CCU CCC AUC CUG UAG GUC ACU G | Moderate
100-600 nM | | 26 | H3D (+46-21) | CUU CGA GGA GGU CUA GGA GGC GCC
UC | No skipping | | 27 | H3A(+30+50) | CUC CCA UCC UGU AGG UCA CUG | Moderate 20-600 nM | | 28 | H3D(+19-03) | UAC CAG UUU UUG CCC UGU CAG G | No skipping | | 29 | H3A(-06+20) | UCA AUA UGC UGC UUCCCA AAC UGA
AA | No skipping | | 30 | H3A(+37+61) | CUA GGA GGC GCC UCC CAU CCU GUA G | No skipping | Antisense oligonucleotides directed at exon 5 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above H5A(+20+50) [SEQ ID NO:31] induces substantial exon 5 skipping when delivered into cells at a concentration of 40 100 nM. Table 7 below shows other antisense molecules tested. The majority of these antisense molecules were not as effective at exon skipping as H5A(+20+50). However, H5A (+15+45) [SEQ ID NO: 40] was able to induce exon 5 skipping at 300 nM. Table 7 below discloses antisense molecule sequences that induce exon 5 skipping. TABLE 7 | SEQ II | Antisense
Oligonucleotide
Oname | Seq | uence | Э | | Ability to
induce
skipping | | | |--------|---------------------------------------|-----|------------|------------|-----|----------------------------------|-----|---------------------------| | 31 | H5A(+20+50) | | | UUU
GUA | | | ACG | Working to
100 nM | | 32 | H5D(+25-05) | | | UGC
UUC | | UGG
A | AGG | No skipping | | 33 | H5D(+10-15) | | CAG
GUG | | UCU | UAC | CUG | Inconsistent
at 300 nM | | 34 | H5A(+10+34) | | UGU
UCA | | UAC | UUC | CAA | Very weak | | 35 | H5D(-04-21) | ACC | AUU | CAU | CAG | GAU | UCU | No skipping | | 36 | H5D(+16-02) | ACC | UGC | CAG | UGG | AGG | AUU | No skipping | | 37 | H5A(-07+20) | | AUA
UGU | | ACU | AAA | UCA | No skipping | | 38 | H5D(+18-12) | | | UCU
GAU | | CUG | CCA | No skipping | | 39 | H5A(+05+35) | | | UCA
ACU | | | CCA | No skipping | | 40 | H5A(+15+45) | | | AUC
UCC | | GAU
A | GUC | Working to
300 nM | 40 Antisense Oligonucleotides Directed at Exon 10 Antisense oligonucleotides directed at exon 10 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. H10A(-05+16) [SEQ ID NO:41] induced substantial exon 10 skipping when delivered into cells. Table 8 below shows other antisense molecules tested. The antisense molecules ability to induce exon skipping was variable. Table 8 below discloses antisense molecule sequences that induce exon 10 skipping. TABLE 8 | SEQAntisense
ID Oligonucleotide name | Sequence | Ability to induce skipping | | | |---|---|----------------------------|--|--| | 41 H10A(-05+16) | CAG GAG CUU CCA AAU GCU GCA | Not tested | | | | 42 H10A(-05+24) | CUU GUC UUC AGG AGC UUC CAA
AUG CUG CA | Not tested | | | | 43 H10A(+98+119) | UCC UCA GCA GAA AGA AGC CAC G | Not tested | | | | 44 H10A(+130+149) | UUA GAA AUC UCU CCU UGU GC | No skipping | | | | 45 H10A(-33-14) | UAA AUU GGG UGU UAC ACA AU | No skipping | | | Antisense oligonucleotides directed at exon 11 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above FIG. **8**B shows an example of H11A(+75+97) [SEQ ID NO:49] antisense molecule inducing exon 11 skipping in cultured human cells. H11A(+75+97) induced substantial exon 11 skipping when delivered into cells at a concentration of 5 nM. Table 9 below shows other antisense molecules tested. The antisense molecules ability to induce exon skipping was observed at 100 nM. TABLE 9 | SEQAntisense
ID Oligonucleotide name | Sequence | Ability to induce skipping | |---|------------------------------------|----------------------------| | 46 H11D(+26+49) | CCC UGA GGC AUU CCC AUC UUG
AAU | Skipping at 100 nM | | 47 H11D(+11-09) | AGG ACU UAC UUG CUU UGU UU | Skipping at 100 nM | | 48 H11A(+118+140) | CUU GAA UUU AGG AGA UUC AUC UG | Skipping at 100 nM | | 49 H11A(+75+97) | CAU CUU CUG AUA AUU UUC CUG UU | Skipping at 100 nM | | 46 H11D(+26+49) | CCC UGA GGC AUU CCC AUC UUG
AAU | Skipping at
5 nM | Antisense Oligonucleotides Directed at Exon 12 30 Antisense oligonucleotides directed at exon 12 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described 35 above H12A(+52+75) [SEQ ID NO:50] induced substantial exon 12 skipping when delivered into cells at a concentration of 5 nM, as shown in FIG. **8**A. Table 10 below shows other antisense molecules tested at a concentration range of 5, 25, 50, 100, 200 and 300 nM. The antisense molecules ability to induce exon skipping was variable. TABLE 10 | SEQ II | Antisense
Oligonucleotide
Oname | Seq | ıenc: | 9 | Ability to
induce
skipping | | | | | | |--------|---------------------------------------|-----|-------|-----|----------------------------------|-----|-----|-----|-----|-----------------------| | 50 | H12A(+52+75) | UCU | UCU | GUU | טטט | GUU | AGC | CAG | UCA | Skipping at 5 nM | | 51 | H12A(-10+10) | UCU | AUG | UAA | ACU | GAA | AAU | טט | | Skipping at
100 nM | | 52 | H12A(+11+30) | UUC | UGG | AGA | UCC | AUU | AAA | AC | | No skipping | Antisense Oligonucleotides Directed at Exon 13 Antisense oligonucleotides directed at exon 13 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. H13A(+77+100) [SEQ ID NO:53] induced substantial exon 13 skipping when delivered into cells at a concentration of 5 nM. Table 11 below includes two other antisense molecules tested at a concentration range of 5, 25, 50, 100, 65 200 and 300 nM. These other antisense molecules were unable to induce exon skipping. 42 . 55 TABLE 11 | SEQ
ID | Antisense
Oligonucleotide
name | Sequ | .ence | e | | | | | | ind | ility to
duce
ipping | | |-----------|--------------------------------------|-------|-------|-----|-----|-----|-----|-----|-------|-----|----------------------------|----| | 53 | H13A(+77+100) | CAG | CAG | UUG | CGU | GAU | CUC | CAC | UAG | Sk: | ipping at 5 | nM | | 54 | H13A(+55+75) | UUC . | AUC | AAC | UAC | CAC | CAC | CAU | | No | skipping | | | 55 | H13D(+06-19) | CUA . | AGC | AAA | AUA | AUC | UGA | CCU | UAA G | No | skipping | | Antisense oligonucleotides directed at exon 14 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. H14A(+37+64) [SEQ ID NO:56] induced weak exon 14 skipping when delivered into cells at a concentration of 100 nM. Table 12 below includes other antisense molecules tested at a concentration range of 5, 25, 50, 100, 200 and 300 nM. The other antisense molecules were unable to induce exon skipping at any of the concentrations tested. TABLE 12 | SEQ ID | Antisense
Oligonucleotide
name | Sequence | Ability to induce skipping | |--------|--------------------------------------|--|----------------------------| | 56 | H14A(+37+64) | CUU GUA AAA GAA CCC AGC
GGU CUU CUG U | Skipping at
100 nM | | 57 | H14A(+14+35) | CAU CUA CAG AUG UUU GCC | No skipping | | 58 | H14A(+51+73) | GAA GGA UGU CUU GUA AAA
GAA CC | No skipping | | 59 | H14D(-02+18) | ACC UGU UCU UCA GUA AGA | No skipping | | 60 | H14D(+14-10) | CAU GAC ACA CCU GUU CUU
CAG UAA | No skipping | | 61 | H14A(+61 +80) | CAU UUG AGA AGG AUG UCU
UG | No skipping | | 62
 H14A(-12+12) | AUC UCC CAA UAC CUG GAG
AAG AGA | No skipping | # Antisense Oligonucleotides Directed at Exon 15 Antisense oligonucleotides directed at exon 15 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. H15A(-12+19) [SEQ ID NO:63] and H15A(+48+71) [SEQ ID NO:64] induced substantial exon 15 skipping when delivered into cells at a concentration of 10 Nm, as shown in FIG. 9A. Table 13 below includes other antisense molecules tested at a concentration range of 5, 25, 50, 100, 200 and 300 Nm. These other antisense molecules were unable to induce exon skipping at any of the concentrations tested. TABLE 13 | SEQ : | Antisense
Oligonucleotide
IDname | Seqi | ıence | Ability to
induce
skipping | | | | | | | | |-------|--|------------|-------|----------------------------------|-----|-----|-----|-----|-----|-----|---------------------| | 63 | H15A(-12+19) | GCC
CAU | | CAC | UAA | AAA | GGC | ACU | GCA | AGA | Skipping at
5 Nm | | 64 | H15A(+48+71) | UCU | UUA | AAG | CCA | GUU | GUG | UGA | AUC | | Skipping at
5 Nm | | 65 | H15A(+08+28) | טטט | CUG | AAA | GCC | AUG | CAC | UAA | | | No skipping | TABLE 13-continued | SEQ II | Antisense
Oligonucleotide
Dname | Sequence | | | | | | | | | | Ability to
induce
skipping | | |--------|---------------------------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|----|----------------------------------|--| | 63 | H15A(-12+19) | GCC
CAU | | CAC | UAA | AAA | GGC | ACU | GCA | AGA | No | skipping | | | 66 | H15D(+17-08) | GUA | CAU | ACG | GCC | AGU | טטט | UGA | AGA | С | No | skipping | | Antisense oligonucleotides directed at exon 16 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. H16A(-12+19) [SEQ ID NO:67] and H16A(-06+25) [SEQ ID NO:68] induced substantial exon 16 skipping when delivered into cells at a concentration of 10 nM, as shown in FIG. 9B. Table 14 below includes other antisense molecules tested. H16A(-06+19) [SEQ ID NO:69] and H16A(+87+109) [SEQ ID NO:70] were tested at a concentration range of 5, 25, 50, 100, 200 and 300 nM. These two antisense molecules were able to induce exon skipping at 25 nM and 100 nM, respectively. Additional antisense molecules were tested at 100, 200 and 300 nM and did not result in any exon skipping. H19A(+35+65) [SEQ ID NO:79] induced substantial exon 19 skipping when delivered into cells at a concentration of 10 nM. This antisense molecule also showed very strong exon skipping at concentrations of 25, 50, 100, 300 and 600 nM. FIG. 10 illustrates exon 19 and 20 skipping using a "cocktail" of antisense oligonucleotides, as tested using gel electrophoresis. It is interesting to note that it was not easy to induce exon 20 skipping using single antisense oligonucleotides H20A(+44+71) [SEQ ID NO:81] or H20A(+149+170) [SEQ ID NO:82], as illustrated in sections 2 and 3 of the gel shown in FIG. 10. Whereas, a "cocktail" of antisense oligonucleotides was more efficient as can be seen in section 4 of FIG. 10 using a "cocktail" of antisense oligonucleotides H20A(+44+71) and H20A(+149+170). When the cocktail was used to target exon 19, skipping was even stronger (see section 5, FIG. 10). TABLE 14 | SEQ
ID | Antisense
Oligonucleotide
name | Sequ | ıence | e | | | | | | | Ability to
induce
skipping | | | |-----------|--------------------------------------|------|------------|-------|-------|-------|-------|------|------|----|----------------------------------|----------------|--| | 67 | H16A(-12+19) | | GAU
ACA | | CUU | UUA | AAA | CCU | GUU | | Ski
5 n | pping at
M | | | 68 | H16A(-06+25) | | UUU
GUU | | GAU | CCG | CUU | UUA | AAA | | Ski
5 n | pping at
M | | | 69 | H16A(-06+19) | CUA | GAU | CCG | CUU | UUA | AAA | CCU | GUU | A | Ski
25 | pping at
nM | | | 70 | H16A(+87+109) | CCG | UCU | UCU | GGG | UCA | CUG | ACU | UA | | | pping at
nM | | | 71 | H16A(-07+19) | CUA | GAU | CCG | CUU | UUA | AAA | CCU | GUU | AA | Ио | skipping | | | 72 | H16A(-07+13) | CCG | CUU | UUA | AAA | CCU | GUU | AA | | | No | skipping | | | 73 | H16A(+12+37) | UGG | AUU | GCU | טטט | UCU | טטט | CUA | GAU | CC | No | skipping | | | 74 | H16A(+92+116) | CAU | GCU | UCC | GUC | UUC | UGG | GUC | ACU | G | No | skipping | | | 75 | H16A(+45+67) | G A | של ענ | JG UT | JU GA | AG UC | GA AU | JA C | AG U | | No | skipping | | | 76 | H16A(+105+126) | GUU | AUC | CAG | CCA | UGC | UUC | CGU | С | | No | skipping | | | 77 | H16D(+05-20) | UGA | UAA | UUG | GUA | UCA | CUA | ACC | UGU | G | No | skipping | | | 78 | H16D(+12-11) | GUA | UCA | CUA | ACC | UGU | GCU | GUA | С | | No | skipping | | ## Antisense Oligonucleotides Directed at Exon 19 Antisense oligonucleotides directed at exon 19 were prepared and tested for their ability to induce exon skipping in 65 human muscle cells using similar methods as described above. FIG. 11 illustrates gel electrophoresis results of exon 19/20 skipping using "weasels" The "weasels" were effective in skipping exons 19 and 20 at concentrations of 25, 50, 100, 300 and 600 nM. A further "weasel" sequence is shown in the last row of Table 3C. This compound should give good results. Antisense Oligonucleotides Directed at Exon 20 Antisense oligonucleotides directed at exon 20 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described 5 above. None of the antisense oligonucleotides tested induced exon 20 skipping when delivered into cells at a concentration of 10, 25, 50, 300 or 600 nM (see Table 15). Antisense molecules H20A(-11+17) [SEQ ID NO:86] and H20D(+ 10 08-20) [SEQ ID NO:87] are yet to be tested. 48 However, a combination or "cocktail" of H20A(+44+71) [SEQ ID NO: 81] and H20(+149+170) [SEQ ID NO:82] in a ratio of 1:1, exhibited very strong exon skipping at a concentration of 100 nM and 600 nM. Further, a combination of antisense molecules H19A(+35+65) [SEQ ID NO:79], H20A(+44+71) [SEQ ID NO:81] and H20A(+149+170) [SEQ ID NO:82] in a ratio of 2:1:1, induced very strong exon skipping at a concentration ranging from 10 nM to 600 nM TABLE 15 | SEQ
ID | Antisense
Oligonucleotide
name | Seqı | ıence | e | | | | | | Ability to
induce
skipping | |------------|--|-------------------|------------------|-----------|-----|-----|-------------------|-----|-------|----------------------------------| | 81 | H20A(+44+71) | CUG | | GAA | UUC | GAU | CCA | CCG | GCU | No
skipping | | 82 | H20A(+147+168) | CAG | CAG | UAG | UUG | UCA | UCU | GCU | С | No
skipping | | 83 | H20A(+185+203) | UGA | UGG | GGU | GGU | GGG | UUG | G | | No
skipping | | 84 | H20A(-08+17) | AUC | UGC | AUU | AAC | ACC | CUC | UAG | AAA G | No
skipping | | 85 | H20A(+30+53) | CCG | GCU | GUU | CAG | UUG | UUC | UGA | GGC | No
skipping | | 86 | H20A(-11+17) | AUC
GAA | | AUU | AAC | ACC | CUC | UAG | AAA | Not tested
yet | | 87 | H20D(+08-20) | GAA
CAA | | GAA | GAG | AUU | CUU | ACC | UUA | Not tested
yet | | 81 &
82 | H20A(+44+71) &
H20A(+147+168) | GUU | C | | | | CCA | | | Very strong
skipping | | | H19A(+35+65);
H20A(+44+71);
H20A(+147+168) | UGC
CUG
GUU | AGU
GCA
C; | U;
GAA | UUC | GAU | CUG
CCA
UCU | CCG | GCU | Very strong
skipping | ## Antisense Oligonucleotides Directed at Exon 21 Antisense oligonucleotides directed at exon 21 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. H21A(+85+108) [SEQ ID NO:92] and H21A(+85+106) [SEQ ID NO:91] induced exon 21 skipping when delivered into cells at a concentration of 50 nM. Table 16 below includes other antisense molecules tested at a concentration range of 5, 25, 50, 100, 200 and 300 nM. These antisense molecules showed a variable ability to induce exon skipping TABLE 16 | _ | Antisense
Oligonucleotide name | Seq | Sequence | | | | | | | | Ability to induce skipping | | | | | |----|-----------------------------------|-----|----------|-----|-----|-----|-----|-----|---|-------|----------------------------|-----|----|--|--| | 90 | H21A(-06+16) | GCC | GGU | UGA | CUU | CAU | CCU | GUG | С | Skips | at | 600 | nM | | | | 91 | H21A(+85+106) | CUG | CAU | CCA | GGA | ACA | UGG | GUC | C | Skips | at | 50 | nM | | | | 92 | H21A(+85+108) | GUC | UGC | AUC | CAG | GAA | CAU | GGG | | Skips | at | 50 | nM | | | TABLE 16-continued | SEQ Antisense
ID Oligonucleotide nam | e Sequence | Ability to induce skipping | |---|------------------------------------|----------------------------| | 93 H21A(+08+31) | GUU GAA GAU CUG AUA GCC GGU
UGA | Skips faintly to | | 94 H21D(+18-07) | UAC UUA CUG UCU GUA GCU CUU
UCU | No skipping | Antisense oligonucleotides directed at exon 22 were prepared and tested for their ability to induce exon skipping in 15 human muscle cells using similar methods as described above FIG. 12 illustrates differing efficiencies of two antisense molecules directed at exon 22 acceptor splice site. H22A(+ 125+106) [SEQ ID NO:96] and H22A(+80+101) [SEQ ID NO: 98] induce strong exon 22 skipping from 50 nM to 600 nM concentration. H22A(+125+146) [SEQ ID NO:96] and H22A(+80+101) [SEQ ID NO:98] induced exon 22 skipping when delivered into cells at a concentration of 50 nM. Table 17 below shows other antisense molecules tested at a concentration range of 50, 100, 300 and 600 nM. These antisense molecules showed a variable ability to induce exon skipping. TABLE 17 | SEQ II | Antisense
oligonucleotide
Oname | Sequ | ıence | e | | | | | | Ability to induce skipping | |--------|---------------------------------------|------------|-------|-----|-----|-----|-----|-----|---|----------------------------| | 95 |
H22A(+22+45) | CAC
GCA | UCA | UGG | UCU | CCU | GAU | AGC | | No skipping | | 96 | H22A(+125+146) | CUG | CAA | UUC | CCC | GAG | UCU | CUG | C | Skipping to 50 nM | | 97 | H22A(+47+69) | ACU
UG | GCU | GGA | CCC | AUG | UCC | UGA | | Skipping to 300 nM | | 98 | H22A(+80+101) | CUA | AGU | UGA | GGU | AUG | GAG | AGU | | Skipping to 50 nM | | 99 | H22D(+13-11) | UAU
CC | UCA | CAG | ACC | UGC | AAU | UCC | | No skipping | ## Antisense Oligonucleotides Directed at Exon 23 Antisense oligonucleotides directed at exon 23 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. Table 18 below shows antisense molecules tested at a concentration range of 25, 50, 100, 300 and 600 nM. These antisense molecules showed no ability to induce exon skipping or are yet to be tested. TABLE 18 | SEQ II | Antisense
oligonucleotide
)name | Sequ | ıence | e | | | | | | ind | ility to
Nuce
ipping | |--------|---------------------------------------|-----------|-------|-----|-----|-----|-----|-----|-----|-----|----------------------------| | 100 | H23A(+34+59) | ACA
CC | GUG | GUG | CUG | AGA | UAG | UAU | AGG | No | skipping | | 101 | H23A(+18+39) | UAG | GCC | ACU | UUG | UUG | CUC | UUG | С | No | Skipping | | 102 | H23A(+72+90) | UUC | AGA | GGG | CGC | טטט | CUU | С | | No | Skipping | 60 # Antisense Oligonucleotides Directed at Exon 24 Antisense oligonucleotides directed at exon 24 were prepared using similar methods as described above. Table 19 below outlines the antisense oligonucleotides directed at exon 24 that are yet to be tested for their ability to induce exon 24 skipping. TABLE 19 | SEQ II | Antisense
oligonucleotide
Oname | Seq | uence | € | | | | | | Abilit
induce
skipp: | = | |--------|---------------------------------------|-----|-------|-----|-----|-----|-----|-----|----|----------------------------|---------| | 103 | H24A(+48+70) | GGG | CAG | GCC | AUU | CCU | CCU | UCA | GA | Needs | testing | | 104 | H24A(-02+22) | UCU | UCA | GGG | טטט | GUA | UGU | GAU | | Needs | testing | Antisense oligonucleotides directed at exon 25 were prepared using similar methods as described above. Table 20 below shows the antisense oligonucleotides directed at exon 25 that are yet to be tested for their ability to induce exon 25 skipping. TABLE 20 | SEQ II | Antisense
oligonucleotide
Oname | Seqi | uenc (| 9 | | Ability to
induce
skipping | | | | | | |--------|---------------------------------------|-----------|------------|-----|-----|----------------------------------|-----|-----|-----|-------|---------| | 105 | H25A(+9+36) | | GGC
CUG | UGA | AUU | GUC | UGA | AUA | | Needs | testing | | 106 | H25A(+131+156) | CUG
AG | UUG | GCA | CAU | GUG | AUC | CCA | CUG | Needs | testing | | 107 | H25D(+16-08) | GUC | UAU | ACC | UGU | UGG | CAC | AUG | UGA | Needs | testing | # Antisense Oligonucleotides Directed at Exon 26 Antisense oligonucleotides directed at exon 26 were prepared using similar methods as described above. Table 21 below outlines the antisense oligonucleotides directed at exon 26 that are yet to be tested for their ability to induce exon 26 skipping. TABLE 21 | SEQ II | Antisense
oligonucleotide
Oname | Seqi | ıenc: | e | | | | | | | Ability to
induce
skipping | |--------|---------------------------------------|-----------|-------|-----|-----|-----|-----|-----|-----|---|----------------------------------| | 108 | H26A(+132+156) | UGC | טטט | CUG | UAA | UUC | AUC | UGG | AGU | U | Needs testing | | 109 | H26A(-07+19) | CCU
AC | CCU | UUC | UGG | CAU | AGA | CCU | UCC | | Needs testing | | 110 | H26A(+68+92) | UGU | GUC | AUC | CAU | UCG | UGC | AUC | UCU | G | Faint skipping
at 600 nM | # Antisense Oligonucleotides Directed at Exon 27 Antisense oligonucleotides directed at exon 27 were prepared using similar methods as described above. Table 22 55 below outlines the antisense oligonucleotides directed at exon 27 that are yet to be tested for their ability to induce exon 27 skipping. TABLE 22 | | Antisense
oligonucleotide
name | Sequ | ence | 9 | | | | | Ability to induce skipping | |-----|--------------------------------------|------------|------|-----|-----|-----|-----|-----|----------------------------| | 111 | H27A(+82+106) | UUA
GUG | | CCU | CUU | GUG | CUA | CAG | Needs testing | 53 TABLE 22-continued | SEQ II | Antisense
oligonucleotide
Oname | Sequer | ıce | | Ability to induce skipping | | | | |--------|---------------------------------------|--------------|--------|-----|----------------------------|-----|-----|--| | 112 | H27A(-4+19) | GGG CC
GA | U CUU | CUU | UAG | CUC | UCU | Faint skipping at
600 and 300 nM | | 113 | H27D(+19-03) | GAC UU | IC CAA | AGU | CUU | GCA | טטט | C v. strong skipping at 600 and 300 nM | Antisense oligonucleotides directed at exon 28 were prepared using similar methods as described above. Table 23 15 below outlines the antisense oligonucleotides directed at exon 28 that are yet to be tested for their ability to induce exon 28 skipping. TABLE 23 | SEQ II | Antisense
oligonucleotide
Oname | Sequence | 3 | | Ability to induce skipping | |--------|---------------------------------------|-------------------|-------------|-----------|---| | 114 | H28A(-05+19) | GCC AAC
AAG | AUG CCC AAA | A CUU CCU | v. strong skipping
at 600 and 300 nM | | 115 | H28A(+99+124) | CAG AGA
CAG GA | UUU CCU CAG | G CUC CGC | Needs testing | | 116 | H28D(+16-05) | CUU ACA | UCU AGC ACC | UCA GAG | v. strong skipping
at 600 and 300 nM | ## Antisense Oligonucleotides Directed at Exon 29 Antisense oligonucleotides directed at exon 29 were pre- 35 pared using similar methods as described above. Table 24 below outlines the antisense oligonucleotides directed at exon 29 that are yet to be tested for their ability to induce exon 29 skipping. # TABLE 24 | | SEQ II | Antisense
oligonucleotide
name | Seq | ıence | e | | | | | | | ility to induce
ipping | | |---|--------|--------------------------------------|------------|-------|-----|-----|-----|-----|-----|---|----|-----------------------------------|---| | • | 117 | H29A(+57+81) | UCC
UGC | | AUC | UGU | UAG | GGU | CUG | | Ne | eds testing | _ | | | 118 | H29A(+18+42) | AUU
UCG | | GUU | AUC | CUC | UGA | AUG | | | strong skipping
600 and 300 nM | ſ | | | 119 | H29D(+17-05) | CAU | ACC | UCU | UCA | UGU | AGU | UCC | С | | strong skipping
600 and 300 nM | j | # Antisense Oligonucleotides Directed at Exon 30 Antisense oligonucleotides directed at exon 30 were prepared using similar methods as described above. Table 25 below outlines the antisense oligonucleotides directed at exon 30 that are yet to be tested for their ability to induce exon 30 skipping. #### TABLE 25 | Antisense | | | |-------------------------------|-------------------------|----------------------------| | oligonucleotide
SEQ IDname | Sequence | Ability to induce skipping | | 120 H30A(+122+147) | CAU UUG AGC UGC GUC CAC | Needs testing | CUU GUC UG TABLE 25-continued | SEQ II | Antisense
oligonucleotide
Dname | Sequence | Ability to induce
skipping | |--------|---------------------------------------|---------------------------------------|---| | 121 | H30A(+25+50) | UCC UGG GCA GAC UGG AUG
CUC UGU UC | Very strong skipping at 600 and 300 nM. | | 122 | H30D(+19-04) | UUG CCU GGG CUU CCU GAG | Very strong skipping at 600 and 300 nM. | Antisense oligonucleotides directed at exon 31 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above FIG. 13 illustrates differing efficiencies of two antisense molecules directed at exon 31 acceptor splice site and a "cocktail" of exon 31 antisense oligonucleotides at varying concentrations. H31D(+03-22) [SEQ ID NO:124] substantially induced exon 31 skipping when delivered into cells at a concentration of 20 nM. Table 26 below also includes other antisense molecules tested at a concentration of 100 and 300 nM. These antisense molecules showed a variable ability to induce exon skipping. TABLE 26 | SEQ II | Antisense
oligonucleotide
)name | Sequenc | :e | | | | | Ability to induce skipping | |--------|---------------------------------------|------------------|-------|-----|-----|-----|-----|----------------------------| | 123 | H31D(+06-18) | UUC UGA | AAU | AAC | AUA | UAC | CUG | Skipping to 300 nM | | 124 | H31D(+03-22) | UAG UUT
CCU G | CUG | AAA | UAA | CAU | AUA | Skipping to 20 nM | | 125 | H31A(+05+25) | GAC UU | UCA | AAU | CAG | AUU | GGA | No skipping | | 126 | H31D(+04-20) | GUU UCT | J GAA | AUA | ACA | UAU | ACC | Skipping to 300 nM | ## Antisense Oligonucleotides Directed at Exon 32 Antisense oligonucleotides directed at exon 32 were prepared and tested for their ability to induce exon skipping in 45 human muscle cells using similar methods as described H32D(+04-16) [SEQ ID NO:127] and H32A(+49+73) [SEQ ID NO:130] induced exon 32 skipping when delivered into cells at a concentration of 300 nM. Table 27 below also shows other antisense molecules tested at a concentration of 100 and 300 nM. These antisense molecules did not show an ability to induce exon skipping. TABLE 27 | Antisense
SEQoligonucleotide
ID name | Sequence | Ability to induce skipping | |--|--------------------------------------|----------------------------| | 127H32D(+04-16) | CAC CAG AAA UAC AUA CCA CA | Skipping to 300 nM | | 128H32A(+151+170) | CAA UGA UUU AGC UGU GAC UG | No skipping | | 129H32A(+10+32) | CGA AAC UUC AUG GAG ACA UCU
UG | No skipping | | 130H32A(+49+73) | CUU GUA GAC GCU GCU CAA AAU
UGG C | Skipping to 300 nM | Antisense Oligonucleotides Directed at Exon 33 Antisense oligonucleotides directed at exon
33 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. 58 FIG. 14 shows differing efficiencies of two antisense molecules directed at exon 33 acceptor splice site. H33A(+64+88) [SEQ ID NO:134] substantially induced exon 33 skipping when delivered into cells at a concentration of 10 nM. Table 28 below includes other antisense molecules tested at a concentration of 100, 200 and 300 nM. These antisense molecules showed a variable ability to induce exon skipping. TABLE 28 | SEQ II | Antisense
oligonucleotide
Oname | Seqi | ıenc (| 9 | | | | | | Ability to i | induce | |--------|---------------------------------------|------------|--------|-----|-----|-----|-----|-----|-------|--------------|--------| | 131 | H33D(+09-11) | CAU | GCA | CAC | ACC | טטט | GCU | CC | | No skipping | | | 132 | H33A(+53+76) | UCU | GUA | CAA | UCU | GAC | GUC | CAG | UCU | Skipping to | 200 nM | | 133 | H33A(+30+56) | GUG
GAC | טטט | AUC | ACC | AUU | UCC | ACU | UCA | Skipping to | 200 nM | | 134 | H33A(+64+88) | GCG | UCU | GCU | טטט | UCU | GUA | CAA | UCU G | Skipping to | 10 nM | Antisense Oligonucleotides Directed at Exon 34 25 Antisense oligonucleotides directed at exon 34 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. Table 29 below includes antisense molecules tested at a concentration of 100 and 300 nM. These antisense molecules showed a variable ability to induce exon skipping. TABLE 29 | SEQ II | Antisense
oligonucleotide
Oname | Sequence | Ability to induce skipping | |--------|---------------------------------------|--|----------------------------| | 135 | H34A(+83+104) | UCC AUA UCU GUA GCU GGC
AGC C | . No skipping | | 136 | H34A(+143+165) | CCA GGC AAC UUC AGA AUC | . No skipping | | 137 | H34A(-20+10) | UUU CUG UUA CCU GAA AAC
AAU UAU AAU GAA | Not tested | | 138 | H34A(+46+70) | CAU UCA UUU CCU UUC GCA
UCU UAC G | Skipping to 300 nM | | 139 | H34A(+95+120) | UGA UCU CUU UGU CAA UUC
CAU AUC UG | Skipping to 300 nM | | 140 | H34D(+10-20) | UUC AGU GAU AUA GGU UUU
ACC UUU CCC CAG | Not tested | | 141 | H34A(+72+96) | CUG UAG CUG CCA GCC AUC | No skipping | Antisense Oligonucleotides Directed at Exon 35 Antisense oligonucleotides directed at exon 35 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. FIG. 15 shows differing efficiencies of antisense molecules directed at exon 35 acceptor splice site. H35A(+24+ 43) [SEQ ID NO:144] substantially induced exon 35 skipping when delivered into cells at a concentration of 20 nM. Table 30 below also includes other antisense molecules tested at a concentration of 100 and 300 nM. These antisense molecules showed no ability to induce exon skipping. TABLE 30 | SEQ II | Antisense
oligonucleotide
)name | Seqi | uence | 9 | | | | | Ability to induce skipping | |--------|---------------------------------------|------|-------|-----|-----|-----|-----|-----|----------------------------| | 142 | H35A(+141+161) | UCU | UCU | GCU | CGG | GAG | GUG | ACA | Skipping to 20 nM | | 143 | H35A(+116+135) | CCA | GUU | ACU | AUU | CAG | AAG | AC | No skipping | | 144 | H35A(+24+43) | UCU | UCA | GGU | GCA | CCU | UCU | GU | No skipping | Antisense Oligonucleotides Directed at Exon 36 Antisense oligonucleotides directed at exon 36 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. Antisense molecule H36A(+26+50) [SEQ ID NO:145] induced exon 36 skipping when delivered into cells at a concentration of 300 nM, as shown in FIG. 16. Antisense Oligonucleotides Directed at Exon 37 Antisense oligonucleotides directed at exon 37 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. FIG. 17 shows differing efficiencies of two antisense molecules directed at exon 37 acceptor splice site. H37A(+82+105) [SEQ ID NO:148] and H37A(+134+157) [SEQ ID NO:149] substantially induced exon 37 skipping when delivered into cells at a concentration of 10 nM. Table 31 below shows the antisense molecules tested. TABLE 31 | SEQ II | Antisense
oligonucleotide
Oname | Sequ | ıenc (| 9 | | | | | | Ability to induce skipping | |--------|---------------------------------------|------|--------|-----|-----|-----|-----|-----|-------|----------------------------| | 147 | H37A(+26+50) | CGU | GUA | GAG | UCC | ACC | טטט | GGG | CGU A | No skipping | | 148 | H37A(+82+105) | UAC | UAA | טטט | CCU | GCA | GUG | GUC | ACC | Skipping to 10 nM | | 149 | H37A(+134+157) | UUC | UGU | GUG | AAA | UGG | CUG | CAA | AUC | Skipping to 10 nM | #### Antisense Oligonucleotides Directed at Exon 38 Antisense oligonucleotides directed at exon 38 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. FIG. 18 illustrates antisense molecule H38A(+88+112) [SEQ ID NO:152], directed at exon 38 acceptor splice site. H38A(+88+112) substantially induced exon 38 skipping when delivered into cells at a concentration of 10 nM. Table 32 below shows the antisense molecules tested and their ability to induce exon skipping. TABLE 32 | Antisense
SEQoligonucleotide
ID name | Sequ | ence | <u> </u> | | | | | Ability to induce skipping | |--|------------|------|----------|-----|-----|-----|-----|----------------------------| | 150H38A(-01+19) | CCU | UCA | AAG | GAA | UGG | AGG | CC | No skipping | | 151H38A(+59+83) | UGC
GGU | | AUU | UCA | GCC | UCC | AGU | Skipping to 10 nM | | 152H38A(+88+112) | UGA
UCA | | CUU | CCU | CUU | UCA | GAU | Skipping to 10 nM | Antisense oligonucleotides directed at exon 39 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described 5 above. Antisense Oligonucleotides Directed at Exon 39 H39A(+62+85) [SEQ ID NO:153] induced exon 39 skipping when delivered into cells at a concentration of 100 nM. Table 33 below shows the antisense molecules tested and their ability to induce exon skipping. TABLE 33 | SEQ II | Antisense
oligonucleotide
Oname | Seqı | ıence | e | | | | | Ability to induce skipping | |--------|---------------------------------------|------|-------|-----|-----|-----|-----|-----|----------------------------| | 153 | H39A(+62+85) | CUG | GCU | UUC | UCU | CAU | CUG | UGA | Skipping to 100 nM | | 154 | H39A(+39+58) | GUU | GUA | AGU | UGU | CUC | CUC | טט | No skipping | | 155 | H39A(+102+121) | UUG | UCU | GUA | ACA | GCU | GCU | GU | No skipping | | 156 | H39D(+10-10) | GCU | CUA | AUA | CCU | UGA | GAG | CA | Skipping to 300 nM | Antisense Oligonucleotides Directed at Exon 40 Antisense oligonucleotides directed at exon 40 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. FIG. **19** illustrates antisense molecule H40A(-05+17) 35 [SEQ ID NO:157] directed at exon 40 acceptor splice site. H40A(-05+17) and H40A(+129+153) [SEQ ID NO:158] both substantially induced exon 40 skipping when delivered into cells at a concentration of 5 nM. Antisense Oligonucleotides Directed at Exon 42 Antisense oligonucleotides directed at exon 42 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. FIG. **20** illustrates antisense molecule H42A(-04+23) [SEQ ID NO:159], directed at exon 42 acceptor splice site. H42A(-4+23) and H42D(+19-02) [SEQ ID NO:161] both induced exon 42 skipping when delivered into cells at a concentration of 5 nM. Table 34 below shows the antisense molecules tested and their ability to induce exon 42 skipping. TABLE 34 | SEQ II | Antisense
afigonucleotide
Oname | Sequence | Ability to induce skipping | |--------|---------------------------------------|--|----------------------------| | 159 | H42A(-4+23) | AUC GUU UCU UCA CGG ACA GUG
UGG UGC | Skipping to 5 nM | | 160 | H42A(+86+109) | GGG CUU GUG AGA CAU GAG UGA
UUU | Skipping to 100 nM | | 161 | H42D(+19-02) | A CCU UCA GAG GAC UCC UCU
UGC | Skipping to 5 nM | Antisense Oligonucleotides Directed at Exon 43 - Antisense oligonucleotides directed at exon 43 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. - H43A(+101+120) [SEQ ID NO:163] induced exon 43 skipping when delivered into cells at a concentration of 25 nM. Table 35 below includes the antisense molecules tested and their ability to induce exon 43 skipping. 62 Antisense oligonucleotide H43D(+10-15) H43A(+101+120) H43A(+78+100) SEO ID name 163 TABLE 35 | TABLE 33 | | |--------------------------------------|----------------------------| | Sequence | Ability to induce skipping | | UAU GUG UUA CCU ACC CUU GUC
GGU C | Skipping to 100 nM | | GGA GAG AGC UUC CUG UAG CU | Skipping to 25 nM | UCA CCC UUU CCA CAG GCG UUG CA Skipping to 200 nM ## Antisense Oligonucleotides Directed at Exon 44 Antisense oligonucleotides directed at exon 44 were prepared using similar methods as described above. Testing for the ability of these antisense molecules to induce exon 44 skipping is still in progress. The antisense molecules under review are shown as SEQ ID Nos: 165 to 167 in Table 1A. #### Antisense Oligonucleotides Directed at Exon 45 Antisense oligonucleotides directed at exon 45 were prepared using similar methods as described above. Testing for the ability of these antisense molecules to induce exon 45 25 skipping is still in progress. The antisense molecules under review are shown as SEQ ID Nos: 207 to 211 in Table 1A. ## Antisense Oligonucleotides Directed at Exon 46 Antisense
oligonucleotides directed at exon 46 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. FIG. 21 illustrates the efficiency of one antisense molecule directed at exon 46 acceptor splice site. Antisense oligonucleotide H46A(+86+115) [SEQ ID NO:203] showed very strong ability to induce exon 46 skipping. Table 36 below includes antisense molecules tested. These antisense molecules showed varying ability to induce exon 46 skipping. H47A(+76+100) [SEQ ID NO:170] and H47A(-09+12) [SEQ ID NO:172] both induced exon 47 skipping when delivered into cells at a concentration of 200 nM. H47D(+25-02) [SEQ ID NO: 171] is yet to be prepared and tested. ## Antisense Oligonucleotides Directed at Exon 50 Antisense oligonucleotides directed at exon 50 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. Antisense oligonucleotide molecule H50A(+02+30) [SEQ ID NO: 173] was a strong inducer of exon skipping. Further, H50A(+07+33) [SEQ ID NO:174] and H50D(+07-18) [SEQ ID NO:175] both induced exon 50 skipping when delivered into cells at a concentration of 100 nM. ## Antisense Oligonucleotides Directed at Exon 51 Antisense oligonucleotides directed at exon 51 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described FIG. 22 illustrates differing efficiencies of two antisense molecules directed at exon 51 acceptor splice site. Antisense oligonucleotide H51A(+66+90) [SEQ ID NO:180] showed the stronger ability to induce exon 51 skipping. Table 37 TABLE 36 | SEQ II | Antisense
oligonucleotide
Oname | Sequence | | | | | | Ability to
induce
skipping | | | | |--------|---------------------------------------|------------|------------|-----|-----|-----|-----|----------------------------------|-----|-------|-------------------| | 168 | H46D(+16-04) | UUA | CCU | UGA | CUU | GCU | CAA | GC | | No sl | kipping | | 169 | H46A(+90+109) | UCC | AGG | UUC | AAG | UGG | GAU | AC | | No sl | kipping | | 203 | H46A(+86+115) | | UUU
AGC | UCC | AGG | UUC | AAG | UGG | GAU | | skipping
00 nM | | 204 | H46A(+107+137) | | GCU
UUC | | CUU | UUA | GUU | GCU | GCU | | skipping
00 nM | | 205 | H46A(-10+20) | UAU
AGA | | טטט | GUU | CUU | CUA | GCC | UGG | Weak | skipping | | 206 | H46A(+50+77) | CUG
AUU | | CCU | CCA | ACC | AUA | AAA | CAA | Weak | skipping | # Antisense Oligonucleotides Directed at Exon 47 Antisense oligonucleotides directed at exon 47 were prepared and tested for their ability to induce exon skipping in 65 human muscle cells using similar methods as described above. below includes antisense molecules tested at a concentration range of 25, 50, 100, 300 and 600 nM. These antisense molecules showed varying ability to induce exon 51 skipping. The strongest inducers of exon skipping were antisense oligonucleotide H51A(+61+90) [SEQ ID NO: 179] and H51A(+66+95) [SEQ ID NO: 181]. 64 30 20 TABLE 37 | SEQ II | Antisense
oligonucleotide
)name | Seqi | uenc: | € | | | Ability to induce skipping | |--------|---------------------------------------|------|-------------------|-----|-----|-----|----------------------------| | 176 | H51A(-01+25) | | AGA
GUA | | | GUC | Faint skipping | | 177 | H51D(+16-07) | | AUA
UGA | | UCU | GCU | Skipping at 300 nM | | 178 | H51A(+111+134) | | UGU
GAA | | AGC | CCG | Needs re-testing | | 179 | H51A(+61+90) | | | | | | Very strong
skipping | | 180 | H51A(+66+90) | | UCA
UUU | | | AUG | skipping | | 181 | H51A(+66+95) | | | | | | Very strong
skipping | | 182 | H51D(+08-17) | | AUU
UUC | | | CAU | No skipping | | 183 | H51A/D(+08-17)
& (-15+?) | ACC | AUU
UUC
AAA | | | | No skipping | | 184 | H51A(+175+195) | | CCA
GUG | CCA | UCA | GCC | No skipping | | 185 | H51A(+199+220) | | AUC
UCA | | UUG | AUA | No skipping | Antisense Oligonucleotides Directed at Exon 52 Antisense oligonucleotides directed at exon 52 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above. FIG. 22 also shows differing efficiencies of four antisense molecules directed at exon 52 acceptor splice site. The most $_{40}$ effective antisense oligonucleotide for inducing exon 52 skipping was H52A(+17+37) [SEQ ID NO:188). Table 38 below shows antisense molecules tested at a concentration range of 50, 100, 300 and 600 nM. These antisense molecules showed varying ability to induce exon 50 skipping. Antisense molecules H52A(+12+41) [SEQ ID NO:187] and H52A(+17+37) [SEQ ID NO:188] showed the strongest exon 50 skipping at a concentration of 50 nM. Antisense Oligonucleotides Directed at Exon 53 Antisense oligonucleotides directed at exon 53 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above FIG. 22 also shows antisense molecule H53A(+39+69) [SEQ ID NO:193] directed at exon 53 acceptor splice site. This antisense oligonucleotide was able to induce exon 53 skipping at 5, 100, 300 and 600 nM. A "cocktail" of three exon 53 antisense oligonucleotides: H53A(+23+47) [SEQ ID NO:195], H53A(+150+176) [SEQ ID NO:196] and H53D(+14-07) [SEQ ID NO:194], was also tested, as shown in FIG. 20 and exhibited an ability to induce exon skipping. Table 39 below includes other antisense molecules tested at a concentration range of 50, 100, 300 and 600 nM. These antisense molecules showed varying ability to induce exon 53 skipping. Antisense molecule H53A(+39+69) [SEQ ID NO:193] induced the strongest exon 53 skipping. TABLE 38 | Antisense
SEQoligonucleotide
ID name | Sequence | Ability to induce skipping | |--|--|----------------------------| | 186H52A(-07+14) | UCC UGC AUU GUU GCC UGU AAG | No skipping | | 187H52A(+12+41) | UCC AAC UGG GGA CGC CUC UGU UCC
AAA UCC | Very strong
skipping | | 188H52A(+17+37) | ACU GGG GAC GCC UCU GUU CCA | Skipping to 50 nM | | 189H52A(+93+112) | CCG UAA UGA UUG UUC UAG CC | No skipping | | 190H52D(+05-15) | UGU UAA AAA ACU UAC UUC GA | No skipping | ## TABLE 39 | SEQ II | Antisense
oligonucleotide
)name | Sequ | .ence | е | | | | Ability to induce skipping | |--------|---------------------------------------|------------|-------|-----|-----|-----|-----|---------------------------------| | 191 | H53A(+45+69) | CAU
GGU | | | GUU | GCC | UCC | Faint skipping at
50 nM | | 192 | H53A(+39+62) | CUG
AAG | | CCU | CCG | GUU | CUG | Faint skipping at
50 nM | | 193 | H53A(+39+69) | CAU
GGU | | | | | UCC | Strong skipping
to 50 nM | | 194 | H53D(+14-07) | UAC
UGA | UAA | CCU | UGG | טטט | CUG | Very faint
skipping to 50 nM | | 195 | H53A(+23+47) | CUG
UAC | | | | UUG | | Very faint
skipping to 50 nM | | 196 | H53A(+150+176) | UGU
CCA | | | ACC | CUC | CUU | Very faint
skipping to 50 nM | | 197 | H53D(+20-05) | CUA
AUU | | | GUU | UCU | GUG | Not made yet | | 198 | H53D(+09-18) | GGU
AAC | | | | ACU | | Faint at 600 nM | | 199 | H53A(-12+10) | AUU
AUA | | | ACU | AGA | | No skipping | | 200 | H53A(-07+18) | GAU
CAA | | | | טטט | | No skipping | | 201 | H53A(+07+26) | AUC
UC | CCA | CUG | AUU | CUG | AAU | No skipping | | 202 | H53A(+124+145) | UUG
AAG | | CUG | GCC | UGU | CCU | No skipping | # SEQUENCE LISTING ``` <160> NUMBER OF SEQ ID NOS: 214 <210> SEQ ID NO 1 <211> LENGTH: 24 ``` <211> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 1 gauagguggu aucaacaucu guaa 24 <210> SEQ ID NO 2 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 2 gauagguggu aucaacaucu g 21 <210> SEQ ID NO 3 <211> LENGTH: 25 <212> TYPE: RNA -continued ``` <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 3 gauagguggu aucaacaucu guaag 25 <210> SEQ ID NO 4 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 4 ggugguauca acaucuguaa 20 <210> SEQ ID NO 5 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 5 20 guaucaacau cuguaagcac <210> SEQ ID NO 6 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 6 ugcauguucc agucguugug ugg 23 <210> SEQ ID NO 7 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 7 cacuauucca gucaaauagg ucugg 25 <210> SEQ ID NO 8 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 8 ``` auuuaccaac cuucaqqauc qaqua ``` <210> SEQ ID NO 9 <211> LENGTH: 21 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate
antisense oligonucleotide <400> SEQUENCE: 9 ggccuaaaac acauacacau a 21 <210> SEQ ID NO 10 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 10 cauuuuugac cuacaugugg 20 <210> SEO ID NO 11 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-0-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 11 uuugaccuac auguggaaag 2.0 <210> SEQ ID NO 12 <211> LENGTH: 26 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-0-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 12 uacauuuuug accuacaugu ggaaag 26 <210> SEQ ID NO 13 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-0-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 13 22 auuuuugacc uacaugggaa ag <210> SEQ ID NO 14 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-O-methyl phosphorothicate antisense ``` -continued ``` oligonucleotide <400> SEQUENCE: 14 uacgaguuga uugucggacc cag 23 <210> SEQ ID NO 15 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-0-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 15 guggucuccu uaccuaugac ugugg 25 <210> SEQ ID NO 16 <211> LENGTH: 17 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Canine 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 16 ggucuccuua ccuauga 17 <210> SEQ ID NO 17 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 17 ugucucagua aucuucuuac cuau 24 <210> SEQ ID NO 18 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 18 24 ucuuaccuau gacuauggau gaga <210> SEQ ID NO 19 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 19 20 qcauqaacuc uuquqqaucc <210> SEQ ID NO 20 ``` <211> LENGTH: 20 ``` <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 20 ccaggguacu acuuacauua 20 <210> SEQ ID NO 21 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 21 aucguguguc acagcaucca g 21 <210> SEQ ID NO 22 <211> LENGTH: 30 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 22 uguucagggc augaacucuu guggauccuu 30 <210> SEQ ID NO 23 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 23 uaggaggcgc cucccauccu guaggucacu g 31 <210> SEQ ID NO 24 <211> LENGTH: 31 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 24 31 aggucuagga ggcgccuccc auccuguagg u <210> SEQ ID NO 25 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 25 ``` ``` gcgccuccca uccuguaggu cacug 25 <210> SEQ ID NO 26 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 26 cuucgaggag gucuaggagg cgccuc 26 <210> SEQ ID NO 27 <211> LENGTH: 21 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 27 21 cucccauccu guaggucacu g <210> SEQ ID NO 28 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 28 uaccaguuuu ugcccuguca gg 2.2 <210> SEQ ID NO 29 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 29 ucaauaugcu gcuucccaaa cugaaa 26 <210> SEQ ID NO 30 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 30 cuaggaggcg ccucccaucc uguag 25 <210> SEQ ID NO 31 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic ``` ``` Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 31 uuaugauuuc caucuacgau gucaguacuu c 31 <210> SEQ ID NO 32 <211> LENGTH: 31 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 32 31 cuuaccugcc aguggaggau uauauuccaa a <210> SEQ ID NO 33 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEOUENCE: 33 25 caucaggauu cuuaccugcc agugg <210> SEQ ID NO 34 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 34 cgaugucagu acuuccaaua uucac 25 <210> SEQ ID NO 35 <211> LENGTH: 18 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 35 accauucauc aggauucu 18 <210> SEQ ID NO 36 <211> LENGTH: 18 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 36 18 accugccagu ggaggauu <210> SEQ ID NO 37 ``` ``` <211> LENGTH: 27 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 37 ccaauauuca cuaaaucaac cuguuaa 27 <210> SEQ ID NO 38 <211> LENGTH: 30 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 38 caggauucuu accugccagu ggaggauuau 30 <210> SEQ ID NO 39 <211> LENGTH: 31 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 39 acgaugucag uacuuccaau auucacuaaa u 31 <210> SEQ ID NO 40 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 40 auuuccaucu acgaugucag uacuuccaau a 31 <210> SEQ ID NO 41 <211> LENGTH: 21 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 41 21 caggageuuc caaaugeuge a <210> SEQ ID NO 42 <211> LENGTH: 29 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 42 ``` ``` cuugucuuca ggagcuucca aaugcugca 29 <210> SEQ ID NO 43 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 43 22 uccucagcag aaagaagcca cg <210> SEQ ID NO 44 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense
oligonucleotide <400> SEQUENCE: 44 uuagaaaucu cuccuugugc 20 <210> SEQ ID NO 45 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 45 uaaauugggu guuacacaau 20 <210> SEQ ID NO 46 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 46 24 cccugaggca uucccaucuu gaau <210> SEQ ID NO 47 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-0-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 47 aggacuuacu ugcuuuguuu 20 <210> SEQ ID NO 48 <211> LENGTH: 23 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: ``` ``` <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 48 cuugaauuua ggagauucau cug 23 <210> SEQ ID NO 49 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 49 caucuucuga uaauuuuccu guu 23 <210> SEQ ID NO 50 <211> LENGTH: 24 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 50 ucuucuguuu uuguuagcca guca 2.4 <210> SEQ ID NO 51 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 51 ucuauguaaa cugaaaauuu 20 <210> SEQ ID NO 52 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 52 uucuggagau ccauuaaaac 20 <210> SEQ ID NO 53 <211> LENGTH: 24 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 53 cagcaguugc gugaucucca cuag 2.4 ``` ``` <210> SEQ ID NO 54 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 54 uucaucaacu accaccacca u 21 <210> SEQ ID NO 55 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 55 cuaagcaaaa uaaucugacc uuaag 25 <210> SEQ ID NO 56 <211> LENGTH: 28 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 56 cuuguaaaag aacccagcgg ucuucugu 2.8 <210> SEQ ID NO 57 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 57 caucuacaga uguuugccca uc 22 <210> SEQ ID NO 58 <211> LENGTH: 23 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 58 gaaggauguc uuguaaaaga acc 23 <210> SEQ ID NO 59 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide ``` ``` <400> SEQUENCE: 59 accuguucuu caguaagacg 20 <210> SEQ ID NO 60 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 60 caugacacac cuguucuuca guaa 24 <210> SEQ ID NO 61 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 61 cauuugagaa ggaugucuug 20 <210> SEQ ID NO 62 <211> LENGTH: 24 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 62 aucucccaau accuggagaa gaga 24 <210> SEQ ID NO 63 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 63 gccaugcacu aaaaaggcac ugcaagacau u 31 <210> SEQ ID NO 64 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 64 ucuuuaaagc caguugugug aauc 24 <210> SEQ ID NO 65 <211> LENGTH: 21 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence ``` ``` <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 65 uuucugaaag ccaugcacua a 21 <210> SEQ ID NO 66 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 66 guacauacgg ccaguuuuug aagac 25 <210> SEQ ID NO 67 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 67 cuagaucege uuuuaaaace uguuaaaaca a 31 <210> SEQ ID NO 68 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 68 ucuuuucuag auccgcuuuu aaaaccuguu a 31 <210> SEQ ID NO 69 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 69 cuagaucege uuuuaaaace uguua 25 <210> SEQ ID NO 70 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 70 23 ccgucuucug ggucacugac uua ``` ``` <210> SEQ ID NO 71 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 71 cuagauccgc uuuuaaaacc uguuaa 26 <210> SEQ ID NO 72 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 72 20 ccgcuuuuaa aaccuguuaa <210> SEQ ID NO 73 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 73 uggauugcuu uuucuuuucu agaucc 26 <210> SEQ ID NO 74 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 74 caugcuuccg ucuucugggu cacug 25 <210> SEQ ID NO 75 <211> LENGTH: 23 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 75 23 gaucuuguuu gagugaauac agu <210> SEQ ID NO 76 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide ``` ``` <400> SEQUENCE: 76 guuauccage caugeuuccg uc 22 <210> SEQ ID NO 77 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 77 ugauaauugg uaucacuaac cugug 25 <210> SEQ ID NO 78 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 78 quaucacuaa ccuquqcuqu ac 22 <210> SEQ ID NO 79 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 79 cugcuggcau cuugcaguu 19 <210>
SEQ ID NO 80 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 80 31 gccugagcug aucugcuggc aucuugcagu u <210> SEQ ID NO 81 <211> LENGTH: 28 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 81 28 cuggcagaau ucgauccacc ggcuguuc <210> SEQ ID NO 82 <211> LENGTH: 22 <212> TYPE: RNA ``` -continued ``` <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 82 cagcaguagu ugucaucugc uc 22 <210> SEQ ID NO 83 <211> LENGTH: 19 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 83 ugaugggug guggguugg 19 <210> SEQ ID NO 84 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 84 25 aucugcauua acacccucua gaaag <210> SEQ ID NO 85 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 85 ccggcuguuc aguuguucug aggc 24 <210> SEQ ID NO 86 <211> LENGTH: 28 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 86 aucugcauua acacccucua gaaagaaa 28 <210> SEQ ID NO 87 <211> LENGTH: 28 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 87 28 ``` gaaggagaag agauucuuac cuuacaaa ``` <210> SEQ ID NO 88 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 88 auucgaucca ccggcuguuc 20 <210> SEQ ID NO 89 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 89 cagcaguagu ugucaucugc 20 <210> SEO ID NO 90 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 90 geegguugae uucaueeugu ge 2.2 <210> SEQ ID NO 91 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 91 cugcauccag gaacaugggu cc 22 <210> SEQ ID NO 92 <211> LENGTH: 23 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 92 23 gucugcaucc aggaacaugg guc <210> SEQ ID NO 93 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense ``` ``` oligonucleotide <400> SEQUENCE: 93 guugaagauc ugauagccgg uuga 24 <210> SEQ ID NO 94 <211> LENGTH: 24 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 94 uacuuacugu cuguagcucu uucu 24 <210> SEQ ID NO 95 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 95 cacucauggu cuccugauag cgca 24 <210> SEQ ID NO 96 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 96 cugcaauucc ccgagucucu gc 22 <210> SEQ ID NO 97 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 97 23 acugcuggac ccauguccug aug <210> SEQ ID NO 98 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 98 21 cuaaguugag guauggagag u <210> SEQ ID NO 99 <211> LENGTH: 23 ``` ``` <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 99 uauucacaga ccugcaauuc ccc 23 <210> SEQ ID NO 100 <211> LENGTH: 26 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 100 acaguggugc ugagauagua uaggcc 26 <210> SEQ ID NO 101 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic {\tt Human~2'-O-methyl~phosphorothioate~antisense} oligonucleotide <400> SEQUENCE: 101 22 uaggccacuu uguugcucuu gc <210> SEQ ID NO 102 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 102 uucagagggc gcuuucuuc 19 <210> SEQ ID NO 103 <211> LENGTH: 23 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 103 23 gggcaggcca uuccuccuuc aga <210> SEQ ID NO 104 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 104 ``` ``` ucuucagggu uuguauguga uucu 24 <210> SEQ ID NO 105 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 105 cugggcugaa uugucugaau aucacug 2.7 <210> SEQ ID NO 106 <211> LENGTH: 26 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 106 26 cuguuggcac augugauccc acugag <210> SEO ID NO 107 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 107 gucuauaccu guuggcacau guga 2.4 <210> SEQ ID NO 108 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 108 ugcuuucugu aauucaucug gaguu 25 <210> SEQ ID NO 109 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 109 ccuccuuucu ggcauagacc uuccac 2.6 <210> SEQ ID NO 110 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic ``` ``` Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 110 ugugucaucc auucgugcau cucug 25 <210> SEQ ID NO 111 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 111 25 uuaaggccuc uugugcuaca ggugg <210> SEQ ID NO 112 <211> LENGTH: 23 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEOUENCE: 112 23 gggccucuuc uuuagcucuc uga <210> SEQ ID NO 113 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEOUENCE: 113 gacuuccaaa gucuugcauu uc 22 <210> SEQ ID NO 114 <211> LENGTH: 24 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 114 gccaacaugc ccaaacuucc uaag <210>
SEQ ID NO 115 <211> LENGTH: 26 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 115 cagagauuuc cucagcuccg ccagga 26 <210> SEQ ID NO 116 ``` ``` <211> LENGTH: 21 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 116 cuuacaucua gcaccucaga g 21 <210> SEQ ID NO 117 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 117 uccgccaucu guuagggucu gugcc 25 <210> SEQ ID NO 118 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 118 auuuggguua uccucugaau gucgc 25 <210> SEQ ID NO 119 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 119 cauaccucuu cauguaguuc cc 22 <210> SEQ ID NO 120 <211> LENGTH: 26 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 120 cauuugagcu gcguccaccu ugucug 2.6 <210> SEQ ID NO 121 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 121 ``` ``` uccugggcag acuggaugcu cuguuc 26 <210> SEQ ID NO 122 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 122 uugccugggc uuccugaggc auu 23 <210> SEQ ID NO 123 <211> LENGTH: 24 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 123 uucugaaaua acauauaccu gugc 24 <210> SEQ ID NO 124 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 124 uaguuucuga aauaacauau accug 25 <210> SEQ ID NO 125 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 125 21 gacuugucaa aucagauugg a <210> SEQ ID NO 126 <211> LENGTH: 24 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-0-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 126 guuucugaaa uaacauauac cugu 24 <210> SEQ ID NO 127 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: ``` ``` <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 127 caccagaaau acauaccaca 2.0 <210> SEQ ID NO 128 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 128 caaugauuua gcugugacug 20 <210> SEQ ID NO 129 <211> LENGTH: 23 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 129 cgaaacuuca uggagacauc uug 2.3 <210> SEQ ID NO 130 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 130 cuuguagacg cugcucaaaa uuggc 25 <210> SEQ ID NO 131 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 131 caugcacaca ccuuugcucc 20 <210> SEQ ID NO 132 <211> LENGTH: 24 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 132 ucuguacaau cugacgucca gucu 2.4 ``` ``` <210> SEQ ID NO 133 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 133 gucuuuauca ccauuuccac uucagac 27 <210> SEQ ID NO 134 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 134 ccqucuqcuu uuucuquaca aucuq 25 <210> SEQ ID NO 135 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 135 uccauaucug uagcugccag cc 2.2 <210> SEQ ID NO 136 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-0-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 136 ccaggcaacu ucagaaucca aau 23 <210> SEQ ID NO 137 <211> LENGTH: 30 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 137 uuucuguuac cugaaaagaa uuauaaugaa 30 <210> SEQ ID NO 138 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide ``` ``` <400> SEQUENCE: 138 25 cauucauuuc cuuucgcauc uuacg <210> SEQ ID NO 139 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 139 ugaucucuuu gucaauucca uaucug 26 <210> SEQ ID NO 140 <211> LENGTH: 30 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 140 uucagugaua uagguuuuac cuuuccccag 30 <210> SEQ ID NO 141 <211> LENGTH: 26 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 141 cuguageuge cagecauueu gueaag 26 <210> SEQ ID NO 142 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 142 ucuucugcuc gggaggugac a 21 <210> SEQ ID NO 143 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 143 ccaguuacua uucagaagac 20 <210> SEQ ID NO 144 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence ``` ``` <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 144 ucuucaggug caccuucugu 20 <210> SEQ ID NO 145 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 145 ugugaugugg uccacauucu gguca 25 <210> SEQ ID NO 146 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic {\tt Human~2'-O-methyl~phosphorothioate~antisense} oligonucleotide <400> SEQUENCE: 146 ccauguguuu cugguauucc 20 <210> SEQ ID NO 147 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 147 cguguagagu ccaccuuugg gcgua 25 <210> SEQ ID NO 148 <211> LENGTH: 24 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 148 uacuaauuuc cugcaguggu cacc 24 <210> SEQ ID NO 149 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 149 24 uucuguguga aauggcugca aauc
``` ``` <210> SEQ ID NO 150 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 150 ccuucaaagg aauggaggcc 20 <210> SEQ ID NO 151 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 151 25 ugcugaauuu cagccuccag ugguu <210> SEQ ID NO 152 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 152 ugaagucuuc cucuuucaga uucac 25 <210> SEQ ID NO 153 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 153 cuggcuuucu cucaucugug auuc 24 <210> SEQ ID NO 154 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 154 guuguaaguu gucuccucuu 20 <210> SEQ ID NO 155 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide ``` ``` <400> SEQUENCE: 155 uugucuguaa cagcugcugu 20 <210> SEQ ID NO 156 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 156 gcucuaauac cuugagagca 20 <210> SEQ ID NO 157 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 157 cuuugagacc ucaaauccug uu 22 <210> SEQ ID NO 158 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 158 cuuuauuuuc cuuucaucuc ugggc 25 <210> SEQ ID NO 159 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 159 aucguuucuu cacggacagu gugcugg 27 <210> SEQ ID NO 160 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 160 gggcuuguga gacaugagug auuu 24 <210> SEQ ID NO 161 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence ``` ``` <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 161 accuucagag gacuccucuu gc 22 <210> SEQ ID NO 162 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 162 uauguguuac cuacccuugu cgguc 25 <210> SEQ ID NO 163 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic {\tt Human~2'-O-methyl~phosphorothioate~antisense} oligonucleotide <400> SEQUENCE: 163 20 ggagagagcu uccuguagcu <210> SEQ ID NO 164 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 164 ucacccuuuc cacaggcguu gca 23 <210> SEQ ID NO 165 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 165 uuugugucuu ucugagaaac 20 <210> SEQ ID NO 166 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 166 aaagacuuac cuuaagauac 20 ``` ``` <210> SEQ ID NO 167 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 167 aucugucaaa ucgccugcag 20 <210> SEQ ID NO 168 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 168 20 uuaccuugac uugcucaagc <210> SEQ ID NO 169 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 169 uccagguuca agugggauac 20 <210> SEQ ID NO 170 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 170 gcucuucugg gcuuauggga gcacu 25 <210> SEQ ID NO 171 <211> LENGTH: 27 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 171 27 accuuuaucc acuggagauu ugucugc <210> SEQ ID NO 172 <211> LENGTH: 21 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide ``` ``` <400> SEQUENCE: 172 uuccaccagu aacugaaaca g 21 <210> SEQ ID NO 173 <211> LENGTH: 29 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 173 ccacucagag cucagaucuu cuaacuucc 29 <210> SEQ ID NO 174 <211> LENGTH: 27 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 174 27 cuuccacuca gagcucagau cuucuaa <210> SEQ ID NO 175 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-0-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 175 gggauccagu auacuuacag gcucc 25 <210> SEQ ID NO 176 <211> LENGTH: 26 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 176 26 accagaguaa cagucugagu aggagc <210> SEQ ID NO 177 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 177 23 cucauaccuu cugcuugaug auc <210> SEQ ID NO 178 <211> LENGTH: 24 <212> TYPE: RNA ``` ``` <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 178 uucuguccaa gcccgguuga aauc 24 <210> SEQ ID NO 179 <211> LENGTH: 30 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 179 acaucaagga agauggcauu ucuaguuugg 30 <210> SEQ ID NO 180 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 180 25 acaucaagga agauggcauu ucuag <210> SEQ ID NO 181 <211> LENGTH: 30 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 181 cuccaacauc aaggaagaug gcauuucuag 30 <210> SEQ ID NO 182 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 182 aucauuuuuu cucauaccuu cugcu 25 <210> SEQ ID NO 183 <211> LENGTH: 36 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 183 ``` ``` <210> SEQ ID NO 184 <211> LENGTH: 21 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 184 cacccaccau
cacccucugu g 21 <210> SEQ ID NO 185 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 185 aucaucucgu ugauauccuc aa 22 <210> SEO ID NO 186 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 186 uccugcauug uugccuguaa g 2.1 <210> SEQ ID NO 187 <211> LENGTH: 30 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 187 uccaacuggg gacgccucug uuccaaaucc 30 <210> SEQ ID NO 188 <211> LENGTH: 21 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 188 21 acuggggacg ccucuguucc a <210> SEQ ID NO 189 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense ``` ``` oligonucleotide <400> SEQUENCE: 189 ccguaaugau uguucuagcc 20 <210> SEQ ID NO 190 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 190 uguuaaaaaa cuuacuucga 20 <210> SEQ ID NO 191 <211> LENGTH: 25 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 191 cauucaacug uugccuccgg uucug 25 <210> SEQ ID NO 192 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 192 cuguugccuc cgguucugaa ggug 24 <210> SEQ ID NO 193 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 193 31 cauucaacug uugccuccgg uucugaaggu g <210> SEQ ID NO 194 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 194 21 uacuaaccuu qquuucuquq a <210> SEQ ID NO 195 <211> LENGTH: 25 ``` ``` <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 195 cugaaggugu ucuuguacuu caucc 25 <210> SEQ ID NO 196 <211> LENGTH: 27 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 196 uguauaggga cccuccuucc augacuc 27 <210> SEQ ID NO 197 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic {\tt Human~2'-O-methyl~phosphorothioate~antisense} oligonucleotide <400> SEQUENCE: 197 25 cuaaccuugg uuucugugau uuucu <210> SEQ ID NO 198 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 198 gguaucuuug auacuaaccu ugguuuc 27 <210> SEQ ID NO 199 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 199 22 auucuuucaa cuaqaauaaa aq <210> SEQ ID NO 200 <211> LENGTH: 25 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 200 ``` ``` gauucugaau ucuuucaacu agaau 2.5 <210> SEQ ID NO 201 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 201 aucccacuga uucugaauuc 20 <210> SEQ ID NO 202 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 202 22 uuggcucugg ccuguccuaa ga <210> SEQ ID NO 203 <211> LENGTH: 30 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 203 cucuuuucca gguucaagug ggauacuagc 3.0 <210> SEQ ID NO 204 <211> LENGTH: 31 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 204 caagcuuuuc uuuuaguugc ugcucuuuuc c 31 <210> SEQ ID NO 205 <211> LENGTH: 30 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 205 uauucuuuug uucuucuagc cuggagaaag 3.0 <210> SEQ ID NO 206 <211> LENGTH: 28 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic ``` ``` Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 206 cugcuuccuc caaccauaaa acaaauuc 28 <210> SEQ ID NO 207 <211> LENGTH: 26 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 207 ccaaugccau ccuggaguuc cuguaa <210> SEQ ID NO 208 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEOUENCE: 208 20 uccuquagaa uacuqqcauc <210> SEQ ID NO 209 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEOUENCE: 209 ugcagaccuc cugccaccgc agauuca 27 <210> SEQ ID NO 210 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothicate antisense oligonucleotide <400> SEQUENCE: 210 20 cuaccucuuu uuucugucug <210> SEQ ID NO 211 <211> LENGTH: 20 <212> TYPE: RNA <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 211 20 uguuuuugag gauugcugaa <210> SEQ ID NO 212 ``` #### -continued ``` <211> LENGTH: 84 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Human 2'-O-methyl phosphorothioate antisense oligonucleotide <400> SEQUENCE: 212 cagcaguagu ugucaucugc ucaacuggca gaauucgauc caccggcugu ucaagccuga 60 84 gcugaucugc ucgcaucuug cagu <210> SEQ ID NO 213 <211> LENGTH: 44 <212> TYPE: RNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 213 ucaugcacug agugaccucu uucucgcagg cgcuagcugg agca <210> SEQ ID NO 214 <211> LENGTH: 22 <212> TYPE: RNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 214 ccgugcagac ugacggucuc au 22 ``` # We claim: - 1. An antisense oligonucleotide of 20 to 31 bases comprising a base sequence that is 100% complementary to consecutive bases of exon 45 of the human dystrophin pre-mRNA, wherein the base sequence comprises at least 20 consecutive bases of CCA AUG CCA UCC UGG AGU UCC UGU AA (SEQ ID NO: 207), in which uracil bases are thymine bases, wherein the antisense oligonucleotide is a morpholino antisense oligonucleotide, and wherein the antisense oligonucleotide induces exon 45 skipping; or a pharmaceutically acceptable salt thereof. - 2. A pharmaceutical composition comprising: (i) an antisense oligonucleotide of 20 to 31 bases comprising a base sequence that is 100% complementary to consecutive bases of exon 45 of the human dystrophin pre-mRNA, wherein the base sequence comprises at least 20 consecutive bases of CCA AUG CCA UCC UGG AGU UCC UGU AA (SEQ ID NO: 207), in which uracil bases are thymine bases, wherein the antisense oligonucleotide is a morpholino antisense oligonucleotide, and wherein the antisense oligonucleotide induces exon 45 skipping; or a pharmaceutically acceptable salt thereof, and (ii) a pharmaceutically acceptable carrier. 144 * * * * * # UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. : 9,447,415 B2 Page 1 of 1 APPLICATION NO. : 14/857561 DATED : September 20, 2016 INVENTOR(S) : Stephen Donald Wilton et al. It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: # On the Title Page First Column, on Item (63) under the
subheading Related U.S. Application Data, delete "Continuation of application No. 13/826,880, filed on Mar. 14, 2013, now Pat. No. 9,175,286, which is a continuation of application No. 13/741,150, filed on Jan. 14, 2013, now abandoned, which is a continuation of application No. 13/168,857, filed on Jun. 24, 2011, now abandoned, which is a continuation of application No. 12/837,359, filed on Jan. 15, 2008, now Pat. No. 8,232,384, which is a continuation of application No. 11/570,691, filed as application No. PCT/AU2005/000943 on Jun. 28, 2005, now Pat. No. 7,807,816" and replace with -- Continuation of application No. 13/826,880, filed on Mar. 14, 2013, now Pat. No. 9,175,286, which is a continuation of application No. 13/168,857, filed on Jun. 24, 2011, now abandoned, which is a continuation of application No. 12/837,359, filed on Jun. 24, 2010, now Pat. No. 8,232,384, which is a continuation of application No. 11/570,691, filed as application No. PCT/AU2005/000943 on Jun. 28, 2005, now Pat. No. 7,807,816 -- Signed and Sealed this Third Day of January, 2017 Michelle K. Lee Director of the United States Patent and Trademark Office Michelle K. Lee